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Chapter 1 

Introduction 

The Air Force Research Laboratory Information Directorate AFRL/IF has for decades dealt with the 
needs of the intelügence community to acquire, analyze, and disseminate intelligence information. The 
Image Exploitation Processing Facility (IE-2000) is a research and development testbed for digital im- 
age processing. The IE-2000 facility develops and evaluates software and unique hardware to support 
imagery exploitation. To support its efforts, the IE-2000 undertook the development of an Image Pro- 
cessing Toolkit (EPT) in the summer of 1993. This toolkit provides a extensive library of basic image 
processing routines which can be used in a wide variety of image processing tasks. The toolkit was 
designed to be portable across many platforms. It was also designed so that additional functionally can 
be easily incorporated into the library at any time. 

It has been recognized that the typical workstation does not have sufficient computational power to per- 
form all the desired tasks needed in image exploitation. The computational problem is due to the very 
high resolution of the imagery data (typical image sizes can be as high as 10,000 by 10,000 pixels). 
Because of this, the processing power of the typical desktop workstation can become a severe bottle- 
neck in the viewing and enhancement of the imagery data. Due to the nature of many image processing 
algorithms, an effective method for alievating this problem is through parallelism. Many image process- 
ing routines can achieve near linear speed-up with the addition of processing nodes. Parallel hardware 
can come in many forms, from small clusters of workstations and workstations with multiple processors 
(e.g., 4 processor UltraSPARC) to dedicated hardware containing 10's, 100's, or even 1000's of process- 
ing nodes. One of the challenges in developing a portable parallel image processing library m such a 
potentially diverse environment is the planning for not only the current platforms, but also for unknown 
future platforms. 

These issues led to the development of the Parallel Image Processing Toolkit (PIPT) vl.0.3, sponsored 
by AFRL To hide the details of parallelization from users of the PIPT, a registration/call-back mech- 
anism was used to present a uniform programming interface. To achieve maximum performance and 
portability the PIPT uses the Message Passing Interface (MPI) standard to effect parallelism. The lead- 
ing implementations of MPI are in the public domain so that the PIPT can make use of this important 
standard while still remaining freely available itself. 



1.1    Motivation 

Although the PIPT vl .03 met the goals set out for it, important emerging technologies, such as symmet- 
ric multiprocessing and hierarchical memory systems, merited further investigation so that the Parallel 
Image Processing Toolkit can obtain the highest performance in these environments. Extending the 
PIPT to include the capabilities to exploit these technologies led to the development of the PIPT v2.1. 

The work performed for this project (and reported in this document) concentrated on extending the 
performance and capabilities of the PIPT in the following areas: 

• Advanced data handling 

• Load balancing 

• Parallel high resolution video stills 

• Parallel visualization toolkit 

• Adobe Photoshop interface 

1.2   Work Performed 

Advanced Data Handling Given the hierarchical structure of modern microprocessor memory sys- 
tems, to gain maximum efficiency, algorithms must be cognizant of the costs associated with various 
types of memory accesses and be designed accordingly. As part of this effort, the core computa- 
tional kernels of the PIPT were analyzed with respect to their use of hierarchical memory and were 
re-structured to make better use of it. Issues related to instruction pipelining were also studied. Finally, 
a thread interface for the PIPT was designed and implemented, providing multiple levels of available 
parallelism in the PIPT. 

Load Balancing Heterogeneous clusters of workstations are one important target execution environ- 
ment for the PIPT. In such an environment, where machines may have widely varying computational 
power as well as widely varying run-time loading, it is important for a parallel program to properly 
balance the jobs that are executed on the various nodes in the cluster. As part of this effort, a number 
of load balancing algorithms were designed, analyzed, and tested. The first-finish, first-served and the 
redundand first-finish, first-served both demonstrated effective load balancing in active heterogeneous 
clusters. 



Parallel High Resolution Video Stills As an example of a high-end, computationally expensive task, 
the High Resolution Video Stills algorithm of Schultz and Stevenson [17] was parallelized using the 

PET. 

ParaUel Visualization One remaining serial bottleneck in a typical image exploitation task is in the 
final visualization stage. In a multiprocessor workstation with a shared memory architecture, it is pos- 
sible to parallelize this final step as well. To this end, a parallel visualization library was developed and 
implemented. 

Adobe Photoshop Interface To provide an effective, stable and familiar visualization environment, 
an interface between the Parallel Image Processing Toolkit and Adobe Photoshop was designed and 
implemented. Adobe Photoshop provides a public interface through which external programs can be 
incorporated (so-called plug-ins). An interface to the PIPT was incorporated as a filter plug-in. 

1.3   Document Organization 

This report is organized as follows. A review of parallel image processing and the parallel image pro- 
cessing toolkit is given in Chapter 2. Chapters 3,4, 5, 6, and 7 provide detailed descriptions of the data 
handling, load balancing, parallel HRVS, parallel visualization, and Photoshop plug-in aspects of this 
effort, respectively. Chapter 8 summarizes the important lessons learned in this effort and makes some 
suggestions for future work. 

The results from a comprehensive set of tests of the PIPT are given in Appendix A. 



Chapter 2 

Review of Parallel Image Processing and PIPT 
1.0.3 

2.1    Parallel Image Processing 

The structure of the computational tasks in many low-level and mid-level image processing routines 
readily suggests a natural parallel programming approach. On either a fine- or coarse-grain architecture 
the most natural approach is for each computational node to be responsible for computing the output 
image at a spatially compact set of image locations. This generally will minimize the amount of data 
which needs to be distributed to the individual nodes and therefore minimize the overall communication 
cost. Thus, this approach will generally maximize the speedup of the parallel system. This section 
discusses the approach for data distribution utilized in the toolkit and the message passing system used 
to implement it. 
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Figure 2.1: Data dependency for an image processing algorithm using a point operator. 
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Figure 2.2: Data dependency for an image processing algorithm using a window operator. 

Input Image Output Image 

Figure 2.3: Fine-grained parallel decomposition for an image processing algorithm using a window 
operator. The parallel computation of two diagonally adjacent pixels is shown. 

2.1.1    Data Distribution 

Many image processing algorithms exhibit natural parallelism in the following sense: the input image 
data required to compute a given portion of the output is spatially localized. In the simplest case, an 
output image is computed simply by independently processing single pixels of the input image, as shown 
in Figure 2.1. More generally, a neighborhood (or window) of pixels from the input image is used to 
compute an output pixel, as shown in Figure 2.2. Clearly, the values of the output pixels do not depend 
on each other. Hence, the output pixels can be computed independently and in parallel. This high degree 
of natural parallelism exhibited by many image processing algorithms can be easily exploited by usmg 
parallel computing and parallel algorithms. In fact, many image processing routines can achieve near 
linear speedup with the addition of processing nodes (see Appendix A.4). 

A fine-grained parallel decomposition of a window operator based image processing algorithm would 
assign an output pixel per processor and assign the necessary windowed data required for each output 
pixel to the corresponding processors. Each processor would perform the necessary computations for 
their output pixels. An example fine-grained decomposition of an input image is shown in Figure 2.3. 
A coarse-grained decomposition (suitable for MIMD or SPMD parallel environments) would assign 



Figure 2.4: Coarse-grained parallel decomposition for an image processing algorithm using a window 
operator. 

large contiguous regions of the output image to each of a small number of processors. Each processor 
would perform the appropriate window based operations to its own region of the image. Appropriate 
overlapping regions of the image would be assigned to properly accommodate the window operators 
at the image boundaries. An example coarse-grained decomposition of an input image is shown in 
Figure 2.4. 

2.1.2    Message Passing 

One of the challenges in developing a parallel image processing library is making it portable to the 
various (and diverse) types of parallel hardware that are available (both now and in the future). To 
make parallel code portable, it is important to incorporate a model of parallelism that is used by a large 
number of potential target architectures. The most widely used and well understood paradigm for the 
implementation of parallel programs on distributed memory architectures is that of message passing. 
Several message passing libraries are available in the public domain, including p4 [5], Parallel Virtual 
Machine (PVM) [3], PICL [10], and Zipcode [18]. Recently, a core of library routines (influenced 
strongly by existing libraries) has been standardized in the Message Passing Interface (MPI) [8, 11,9]. 
Public domain implementations of MPI are widely available. More importantly, all vendors of parallel 
machines and high-end workstations provide native versions of MPI optimized for their hardware. 

2.1.3    System Model 

The PIPT, like the IPT before it, is constructed to allow the layered development of image processing 
applications. Figure 2.5 shows the system model for the original image processing toolkit. Applications 



use the IPT by calling image processing routines which are in turn built up from abstract computational 
kernel functions. New image processing routines are also built up from these kernel functions and then 

added to the IPT. 

The PIPT uses a manager/worker scheme in which a manager program reads an image file from disk, 
partitions it into equally sized pieces, and sends the pieces to worker programs running on machines 
in the cluster. The worker programs invoke a specified image processing routine to process their sub- 
images and then send the processed sub-images back to the manager. The manager re-assembles the 
processed sub-images to create a final processed output image. Since the PIP Toolkit's internal image 
format stores rows of pixels contiguously in memory, sub-images are likewise composed of rows of 
pixels from the original image. 

Figure 2.6 shows the system model for the PIPT. Applications use the PIPT by calling image processing 
routines which are in turn built up from abstract computation kernel functions. The kernel functions 
interface to an abstract transport layer which transparently effects parallel execution. The transport 
mechanism makes calls to a Message Passing Interface (MPI) library for its parallel communication 
operations Although the PIPT provides for parallel execution of image processing routmes, parallelism 
is encapsulated at a low level of the system so that users of the toolkit do not need to be concerned with 
parallel programming. 

Figure 2.5: System model for applications using original image processing toolkit. The functionality 
provided by the original image processing toolkit is shown in grey. 

A detailed diagram of the interaction between the various components of the PIPT is shown in Fig- 
ure 2 7 The user application must provide a raw image as well as function parameters to the PIPT 
library function. The library function passes the raw image, the parameters, and a local processmg 
function to a PIPT computational kernel. It is this local processing function which will be applied by 
the computational kernel on the worker nodes to actually process the image. In the C programming 
language, a function can be specified in this way by using a pointer to it. Unfortunately, m a distributed 
memory computing environment, a function pointer is not a meaningful way of specifying functions 
on remote compute nodes. Thus, each compute node constructs a translation table and stores the lo- 
cal memory addresses of necessary functions and data. Global (across all compute nodes) indices are 
then established for each function and for each variable. Thus, functions and variables can be specified 
remotely merely by sending the appropriate index as a message. 

The transport mechanism uses MPI to pass slices of the image, as well as indices for looking up state 



Figure 2.6: System model for applications using parallel image processing toolkit. The functionality 
provided by the parallel image processing toolkit is shown in grey. 

information, to the worker nodes. The worker nodes use the indices to find and set values of local vari- 
ables and then they process the image slice, passing back the image slice to the manager. The processed 
image is assembled by the transport mechanism and passed back to the computational kernel. The kernel 
passes the processed image back to the PIPT library function which in turn passes the processed image 
back to the user application. 

2.2    PIPT 1.0.3 

To support its efforts, the IE-2000 undertook the development of the Image Processing Toolkit (IPT) 
in the summer of 1993. The IPT provides an extensive library of basic image processing routines that 
can be used in a wide variety of image processing tasks. The toolkit was designed to be portable across 
many platforms. It was also designed so that additional functionality can be easily incorporated into the 
library at any time. 

While the original IPT provides the necessary functionally and flexibility required for the intended tasks, 
it became clear that for use in an interactive workstation setting, many important image processing tasks 
are too slow. This is to be expected, given the large image sizes (commonly up to 10,000 x 10,000) 
and the complex operations which are required in image exploitation. Consequently, Parallel Image 
Processing Toolkit (PIPT) was developed, based on the original IPT, to allow for parallel execution of 
image processing tasks. 

Like its predecessor (the IPT), the PEPT is easily extensible and provides a programming interface that 
largely hides parallelism from the user. Inside the Toolkit, a message-passing model of parallelism is 
designed around the Message Passing Interface (MPI) standard. In a typical workstation cluster, and in 
a dedicated parallel environment, the PIPT was able to obtain nearly linear speedup with respect to the 
number of processors on typical image processing tasks. 
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Figure 2.7: Detailed diagram of the interaction between the various components of the PIPT. Compo- 
nents located on worker processors are shown in grey. 



Although the PIPT vl.0.3 achieved its original project goals, there were still some important open issues 
regarding parallel image processing. 

1. Extending the PIPT to obtain high performance on symmetric multiprocessors, 

2. Achieving high performance in the presence of non-uniform memory access environments, 

3. Load balancing for maximum parallel efficiency, and 

4. Parallel visualization. 

We discuss each of these issues below. More details will be given in Chapters 3, 4, 6 regarding their 
actual implementation in the PIPT v2.0. 

Shared Memory 

The PIPT was designed in part to be able to exploit cluster-based parallelism, since this is a ubiquitous 
and cost-effective parallel computing environment. More recently, symmetric multiprocessors (SMPs) 
have emerged as an alternate, but perhaps complementary, parallel computing resource. 

Since the PIPT was developed using MPI, it is portable to most parallel computing environments, in- 
cluding SMPs. In fact, the PIPT vl.0.3 has already been ported to at least two high-end SMP archi- 
tectures, the SGI Power Challenge and the Cray J90. There is, however, an inherent inefficiency in 
vl.0.3's approach when the parallel processing is performed on an SMP architecture. The PPT vl.0.3 
uses a master processor which maintains the entire image data set and passes out segments of the data 
to individual CPUs for processing, as shown in Figure 2.8. This can be easily mapped onto an SMP 
architecture by segmenting the single shared memory resource between CPUs. The master CPU still 
maintains the only complete copy of the image data and still passes out segments of data to individual 
CPUs, as shown in Figure 2.9. However, there is no need for this extra data copy on an SMP archi- 
tecture since all of the CPUs can access the main image data set. Thus, we modified the PIPT to take 
advantage of shared memory parallelism through the use of multi-threading while still using message 
passing for distributed memory environments. Thus, on a single SMP workstation a master CPU will 
still allocate work to individual processors, but the message that is passed between processors is a small 
control message and not a segment of the image data, as shown in Figure 2.10. However, due to the lack 
of thread-safe MPI imeplementations, while this scheme has been implemented on the workers, it is not 
possible to implement it on the manager; the exact problem is discussed in Section 3.7.3. 

The PIPT will thus incorporate a hierarchical model of parallelism that will allow it to function on a 
single workstation, a single SMP, or a cluster of workstations and/or SMPs, see Figures 2.11 and 2.12. 
Although the PIPT contains a large number of routines, these routines rely on a relatively small number 
of computational kernels. By concentrating our efforts on multi-threading these kernels, we will be 
able to provide hierarchical parallelism to the entire toolkit with only modest effort (a similar approach 
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Figure 2.8: Data flow in PIPT 1.0.3. 
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Figure 2.9: Data flow in PIPT 1.0.3 on an SMP architecture 
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SMP Workstation 

Figure 2.10: Proposed data flow in PIPT 2.1 on a SMP workstation. 
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was used in parallelizing the original IPT to produce the PIPT, see [15, 20]) and maintain a consistent 
programming interface. 
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Figure 2.11: Data flow in PIPT 2.1 on a SMP workstation cluster. 

Non-Uniform Memory Access 

Image processing requires not only a large number of computations but a large amount of data movement 
as well. If a program is not careful, the costs of data movement can easily overwhelm the costs of 
computation. 

One important design feature of modern RISC microprocessor-based workstations is a hierarchical 
memory system. That is, the microprocessor can operate at maximum efficiency with data in regis- 
ters and in cache, but at a much lower level of performance for data in main memory, or even worse, 
swapped out to disk. This is due to the fact that modern RISC microprocessors only require a single 
clock cycle to execute one or more instructions with en-registered data. Moving a word of data from 
cache to a register normally takes a single clock cycle, but moving data from main memory to cache 
takes several clock cycles. Thus, if data is not en-registered or not in cache, the microprocessor must 
simply wait until the data can be moved into cache. Figure 2.13 illustrates a typical hierarchical memory 
system. 
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To obtain highest computational performance on a modern microprocessor, it is crucial for computa- 
tionally intensive problems to take the hierarchical nature of the memory system into account. The 
fundamental task is to minimize data movement to and from main memory — once moved to cache, 
data should be kept there and used for as long as possible. Typical strategies for increasing memory 
system performance focus on unrolling and blocking loops, restructuring algorithmic memory access 
patterns, removal of unnecessary dependencies in code blocks, and so forth [4]. 

Optimizing an algorithm for maximum memory efficiency can have a dramatic effect on performance. 
Table 2.1 shows the MFLOP rates obtained while performing matrix-matrix multiplies on an RS/6000 
590, using several different blocking strategies in the code. The peak MFLOP rate for this machine 
is 266.67 MFLOP/sec, which requires that four floating point operations be performed on each clock 
cycle. The best blocking scheme achieves 96.6% of the peak. Note that a poor choice of blocking 
scheme gives very sub-optimal code, achieving only 38.7% of peak — a very poor usage of CPU. 

MFLOP rate    Matrix size    M0    K0    N0    % peak 
103.3 100 1 2 38.7 
168.6 100 1 4 63.0 
257.5 100 1 10 96.5 
102.3 100 2 2 38.4 
170.6 100 2 4 64.0 
180.3 100 2 10 71.4 
157.0 100 2 2 2 58.9 
228.4 100 2 2 4 85.6 
133.6 100 2 2 10 50.1 

Table 2.1: MFLOP rates obtained on RS/6000 Model 590 for matrix-matrix multiply using various 
blocking strategies (Mo, KQ, N0 represent cache-register blocking parameters). 

An important aspect of this work will be to study the issues of hierarchical memory and to develop 
general techniques for maximizing the performance of image and video processing algorithms in the 
presence of non-uniform memory access. The computational structure of matrix-matrix multiplication 
is very regular, as is that of many image and video processing tasks. Many of the techniques used to 
obtain near-peak performance for matrix-matrix multiplication should be applicable to image and video 
processing. 

Load Balancing 

In order to extract maximum performance and efficiency from a parallel computing environment, it is 
critical that the processing load be properly distributed among the processing nodes. Since the entire 
parallel computation cannot be completed until all nodes have completed their computations, the parallel 
computation will be limited by the slowest processor. A single processor taking longer to complete its 
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task than the other processors will hold up the entire parallel computation. In an ideally distributed 
parallel computing task, all the processing nodes will complete their tasks at precisely the same time. 
The goal of load balancing is to partition the parallel task in such a way that this will occur. 

Load balancing becomes particularly difficult in an environment such as a heterogeneous workstation 
cluster because: 

• In a heterogeneous cluster, different processing nodes may have different raw computing power. 

• In an active workstation cluster, different processing nodes may be loaded by running other tasks. 

There are several approaches that can be taken to load-balancing. 

1. Partition the parallel task into a large number of relatively small tasks such that there are many 
more tasks than processors. Allow the worker processors to request processing tasks on a first- 
come first-serve basis. 

2. Actively monitor the available processing power of the processing nodes being used and adjust 
the partitioning of tasks to achieve optimal balance. 

The first approach was incorporated into the PIPT 1.0.3 with encouraging results (see [15, 20]). This 
approach has the disadvantage that it increases the number of communication operations that must be 
performed, thus increasing the total communication cost. In some situations, this might be outweighed 
by the savings gained by good load-balancing, but in other situations it might not. Further refinements, 
such as adjusting the granularity of the task division, or combining this approach with the second, are 
discussed in Chapter 4. 

Parallel Visualization 

One vital and time-consuming portion of the image exploitation process is the final rendering of an 
image onto the computer monitor. This is due to relatively computationally complex operations of 
scaling, rotating, and color mapping that typically takes place. With a standard visualization package all 
of this processing is done with a single process on a single CPU, as shown in Figure 2.14. As part of this 
work, we explored various methodologies (through multithreading) for accelerating the visualization 
process with parallel processing on SMP workstations. The resulting visualization package efficiently 
utilizes the the available compute cycles on all of the available CPUs, as shown in Figure 2.15. Through 
the combination of the parallel image processing toolkit and the parallel visualization toolkit, image 
data is both processed and displayed efficiently. This results in the quickest turnaround from the request 
for an operation until the resultant image is viewed. 
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Figure 2.14: Data flow and CPU usage with a Standard visualization package 
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Figure 2.15: Data flow and CPU usage with a parallel visualization package 
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Chapter 3 

Advanced Data Handling & Shared Memory 

3.1    Overview 

In the PIPT, there is not only a large amount of computation related to image processing, but also a large 
amount of data movement both between the CPU and main memory, and between main memory and 
the underlying communication network. 

Architectural advances that have allowed microprocessors to attain their high level of performance in- 
clude hierarchical memory and pipelining. Most modern microprocessor-based workstations use hierar- 
chical memory systems to alleviate the high cost of main memory access (relative to computation) [12]. 
Because of this high cost, data movement must be handled efficiently or the cost of data movement will 
overwhelm the costs of computation. 

A hierarchical memory system typically consists of five parts: registers, multiple levels of cache, mem- 
ory, disk, and network (see Figure 3.1). A RISC-based microprocessor can only operate on data in 
registers but is able to load and store data from cache to register in a single clock cycle. If data is not in 
the cache, a load operation will require the CPU to wait until the data can be moved into the cache — a 
process that can take numerous clock cycles. The worst case in a virtual memory system is that the data 
is moved from disk to memory or from memory to disk (the time depends on the mechanical response 
time). 

3.2    Cache 

There are three types of cache misses: 

Compulsory If the first access to a datum is not in cache, data is brought in to cache in line size pieces. 
There is nothing that the programmer can do about this type of cache miss, although the latency 
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of the transfer can be alleviated though pre-fetching. 

Capacity If the cache is too small to store the data used during execution, blocks will be discarded to 
make room for new blocks. A miss occurs when a block that was previously in the cache has been 
discarded and later retrieved. 

Conflict If the block placement strategy is set associative or direct mapped, conflict misses will occur 
when two blocks are assigned to the same cache location. This may occur even if there is enough 
room in the cache to hold both blocks. 

To increase performance, it is important that the PIPT takes advantage of the hierarchical memory 
system: data should be kept in cache as long as possible to reduce capacity misses. 
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Figure 3.1: A typical hierarchical memory system. 

3.3   Pipeline 

RISC-based microprocessors typically have a multi-stage instruction pipeline. Pipelining is a technique 
whereby multiple instructions may be overlapped during execution so that one or more mstructions are 
completed per clock cycle. A pipeline is like an assembly line; each stage of the pipeline contributes to 
the execution of an instruction. 

The number of pipeline stages varies from processor to processor, however there are five main stages: 
instruction fetch (IF), instruction decode/register fetch (ID), execute/address calculation (EX), memory 
access (MEM), and write back (WB) [12]. 

Ideally the speedup from pipelining equals the number of pipeline stages. Since the un-pipelined ma- 
chine executes each instruction in a single clock cycle, its average time per instruction is simply the 
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clock cycle time. With a pipelined machine, the clock cycle time is reduces by a factor roughly equal 
to the number of stages. Figure 3.2 demonstrates an ideal pipeline. Usually however, the stages will 

Instruction 1 2 3 4 5 6 7 8 9 
Instruction i IF ID EX MEM WB 
Instruction i +1 IF ID EX MEM WB 
Instruction i + 2 IF ID EX MEM WB 
Instruction i + 3 IF ID EX MEM WB 
Instruction i + 4 IF ID EX MEM WB 

Figure 3.2: Ideal pipeline 

not be perfectly balanced, and the pipelining structure introduces some overhead. In addition, there are 
situations called hazards that prevent a stage of the pipeline from doing work. Specifically, there are 
three types of hazards: 

Structural Hazards These hazards occur when the hardware cannot support the combination of in- 
structions in simultaneous overlapped execution. For example, a structural hazard occurs when 
two stages of the pipeline require the same hardware resource. 

Data Hazards Data hazards arise when one instruction depends on a result that has not yet been made 
available by a previous instruction. 

Control Hazard Control hazards arise from the pipelining of branches and other instructions that 
change the program counter. Control hazards can sometimes be avoided by using a branch pre- 
diction algorithm (which must be implemented in the hardware itself). 

When a hazard is encountered, a stall is introduced into the pipeline; for one or more clock cycles, no 
more instructions are introduced into the pipeline. When the hazard has been completed, new instruc- 
tions are issued into the pipeline, and execution continues normally. The actual speedup from pipelining 
is the pipeline depth divided by one plus the number of stall cycles per instruction. Performance can 
be improved by reducing the number of data and control hazards. Section 3.5 describes techniques for 
doing this. 

Figure 3.3 demonstrates a data hazard. The first instruction loads a value from memory into register 
one. The second instruction subtracts the contents of register five from register one, and puts the answer 
in register four. The MEM cycle of the load produces a value that is needed in the EX cycle of SUB, 
which occurs at the same time. The problem is solved by inserting a stall [12]. The following sections 
illustrate different techniques that can be used to reduce the number of cache misses or pipeline stalls. 
Each technique is presented with an example that compares the unoptimized method with the technique 
discussed in that section. The code fragments used in the following sections have been compiled with 
the KCC compiler from Kuck and Associates [14]. The codes are compiled with no optimizations to 
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Instruction 1      2 3 4 5 6 7 8 9 

LWR1,0(R1) IF    ID EX MEM WB 

SUBR4,R1,R5 IF ID stall EX MEM WB 

AND R6,R1,R7 IF stall ID EX MEM WB 

ORR8,Rl,R9 stall IF ID EX MEM WB 

Figure 3.3: Pipeline with a data hazard 

more clearly demonstrate the method being described. Next, performance results with fall optimization 
(-fast -04 +K3) are provided to demonstrate what the compiler can (and cannot) do to optimize 
the code. The result provided with each example is the best wall clock time of five trials on an unloaded 
machine. 

3.4   Reducing Cache Misses 

Reducing cache misses is extremely important to improving the performance of a given program. Load- 
ing data from memory is unavoidable, so the cost of the initial cache miss is unavoidable. But once the 
data has been loaded from memory, it should be operated on as long as possible while it is still in the 
cache. This will avoid repeatedly paying the high cost of memory access. 

3.4.1    Loop Interchange 

The order of nested loops can affect memory access patterns. For example, when accessing data from 
the two dimensional array shown in Figure 3.4, simply exchanging the nesting of the loops can make 
the code access the data sequentially rather than striding through memory (Figure 3.5). Table 3.1 shows 
how reordering the loops maximizes use of data in a cache before it is discarded. 

The original code would skip through memory in strides of N words. This is the "wrong" loop order. 
Since all the data cannot be loaded into the cache at once for large problem sizes, cache misses occur 
frequently. For the optimized version (the "right" loop order), the array values are accessed sequentially 
through memory, accessing all the words in the cache block before going to the next outer loop iteration. 
This optimization improves cache performance by increasing the hit rate of the cache without affecting 
the number of instructions executed. 

The results are as expected. Notice the discontinuity between when the loops are ordered the wrong 
way between N=256 and N=512. 

In this example, the data associated with the two dimensional array x is contiguous in memory. In C 
and C++, the first index refers to the major dimension. For this example, x\i] \j] is adjacent to x\i] [j +1] 
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in memory, and x[i]\j] is N locations away from x[i + l]\j] in memory. 

double **x; 
// Allocate X to be a contiguous C style 2D array 

for (j = 0; j < N; ++j) 
for (i = ( 3; i < N; ++i) 
x[i][j] = 2 * x[ i] [j]; 

Figure 3.4: Loops in the "wrong" order 

double **x; 
// Allocate X to be a contiguous C style 2D array 

for (i = 0; i < N; ++i) 
for (j = ( 3; j < N; ++j) 

x[i] [j] = 2 * x[i] [j]; 

Figure 3.5: Loops in the "right" order 

In the PIPT, all nested loops were examined to ensure that they were in the right order. This included 
a code review of all routines and kernels. Some of the original IPT routine loops were found to be 
incorrectly ordered, and were corrected. 

3.4.2   Loop Fusion 

Loop fusion is a method that can be used when a program uses two or more distinct loops over the 
same arrays with the same loop indices. By combining the loops together into a single loop, the data 
fetched into the cache can be used repeatedly before being swapped back out to memory. This increases 
the temporal locality of the data, which improves the cache behavior. In Figure 3.6, the original code 
generates cache misses accessing the z array in both loops; the cache miss penalty is paid twice. This 
happens because for large enough N, the entire z array cannot fit in the cache; capacity misses near the 
end of the first loop cause more capacity misses through the second loop. In the fused loop shown in 
Figure 3.7, the number of cache misses is essentially cut in half because both z accesses can utilize a 
single cache miss. Table 3.2 shows how loop fusion increases performance. While the differences in 
wall clock time shown in the table may seem small, taken over many iterations of repeated calculations, 
the aggregate time difference can be significant. 

There were several smaller loops in various PIPT utility routines and within the opaque transport mech- 
anism that benefited from being fused. It is difficult to quantify their exact speedup; since the changes 
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No optimization Full optimization 

Size(N) Wrong order Right order Wrong order Right order 

4 0.000005 0.000257 0.000001 0.000002 

8 0.000037 0.000907 0.000003 0.000003 

16 0.000083 0.000280 0.000009 0.000005 

32 0.000327 0.000269 0.000034 0.000018 

64 0.001076 0.000972 0.000137 0.000060 

128 0.004565 0.004020 0.001101 0.000237 

256 0.017709 0.016046 0.004414 0.000839 

512 0.133931 0.066672 0.103657 0.006921 

1024 0.628488 0.267148 0.482482 0.028425 

Table 3.1: Loop interchange performance results 

double **x, *'*y, **z; 
// Allocate x, y, and z 
// to be contiguous C style 2D arrays 

for (i = 0; i < N; ++i) 
for (j = 0; j < N; ++j) 

x[i] [j] += z[i] [j] ; 

for (i = 0; i < N; ++i) 
for (j = 0; j < N; ++j) 

y[i] [j] += z[i] [j]; 

Figure 3.6: Without loop fusion 

double **x, **y, **z; 
// Allocate x, y, and z 
// to be contiguous C style 2D arrays 

for (i = 0; i < N; ++i) 
for (j = 0; j < N; ++j) { 

x[i] [j] += z[i] [j]; 
y[i]tj] += z[i][j]; 

} 

Figure 3.7: Optimized loop fusion example 
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Size(N) 

No optimization 

Simple   Fused 

Full optimization 

Simple   Fused 

2 0.000001 0.000001 0.000001 0.000001 
4 

8 

0.000002 

0.000004 

0.000001 

0.000005 

0.000001 

0.000004 

0.000002 

0.000005 
16 0.000014 0.000016 0.000013 0.000016 

32 0.000082 0.000079 0.000096 0.000086 

64 0.000330 0.000376 0.000339 0.000387 

128 0.001299 0.001494 0.001312 0.001507 

256 0.012890 0.011536 0.013024 0.011536 

512 0.053770 0.046722 0.053608 0.046667 

1024 0.211119 0.188688 0.209804 0.188558 

Table 3.2: Loop fusion performance results 

were in the PIPT engine itself, all routines were affected depending on how many parameters they 
registered, which hook routines were called, etc. 

3.4.3   Pointer Dereferencing 

Pointer dereferencing can be an expensive operation. Multi-dimensional array dereferencing is a com- 
mon source of performance penalties, particularly when it is the central operation of nested loops. Fig- 
ure 3.8 shows a nested loop that assigns a three dimensional array value from another three dimensional 
array value. This statement causes eight pointer dereferences. First, the x pointer must be resolved to 
find the array of planes. The ith element is then located and dereferenced to find the array of rows. 
The jth element is similarly found and dereferenced to find the array of columns. Finally, the kth ele- 
ment is located so that it can be assigned to. The dereferencing of y is analogous. The total number of 
dereferences is 8JV3. 

The optimized code in Figure 3.9 amortizes the cost of pointer dereferences by extracting pointer ref- 
erences up to the level of the loop where they are actually changed. For example, by moving the plane 
array dereference to the outer loop, it is dereferenced N times instead of AT3 times. Similarly, the row 
pointer deference is moved to the middle loop, leaving only the specific element dereference in the in- 
nermost loop. The total number of dereferences is2(N + N2 + N3), which, for large N, is <C 8iV3. 
Figure 3.3 shows the timing results between the simple dereference and the amortized dereference. 

Every PIPT kernel has several nested loops similar to Figure 3.8 that loops over the planes of pixels 
in the input image/feature(s). Additionally, several routines loop over images or planes of pixels. All 
PIPT code that had nested loops over multi-dimensional arrays were restructured to amortize the cost 
of the pointer dereference. The IPWindowMoments () routine benefitted from amortized pointer 
dereferencing; a comparison of execution times from the PIPT 1.0.3 and 2.1 is shown in Table 3.4. 
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int ***x, *** y; ine - - -x,  y; 
// Allocate x and y to be contiguous C style 3D arrays 

for (i = 0; i < N; i++) 
for (j = 0; j < N; j++) 

for (k = 0; k < N; k++) 
x[i][j][k] = 2 * y[i][j][k]; 

Figure 3.8: Pointer dereferencing example 

int ***x, **x_plane, *x_row; 
int ***y, **y_plane, *y_row; 
// Allocate x and y to be contiguous C style 3D arrays 

for (i = 0; i < N; i++) { 
x_plane = x[i]; 
y_plane = y[i]; 
for (j = 0; j < N; j++) { 
x_row = x_plane[i]; 
y_row = y_plane[i]; 
for (k = 0; k < N; k++) 
x_row[k] = 2 * y_row[k]; 

} 
} 

Figure 3.9: Optimized pointer referencing examples 

No optimization Full optimization 

Size(N) Simple Amortized Simple Amortized 

2 0.000766 0.000090 0.000764 0.000090 

4 0.000158 0.000094 0.000157 0.000094 

8 0.000207 0.000123 0.000202 0.000124 

16 0.005097 0.000339 0.006023 0.000385 

32 0.020339 0.002160 0.019513 0.002337 

64 0.089070 0.015028 0.085139 0.015035 

128 0.456674 0.112652 0.436601 0.110387 

256 2.595699 0.869196 2.367717 0.811176 

Table 3.3: Amortized pointer dereferencing performance results 

27 



Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 14641.126 10477.192 1.397 
2 Sun UltraSPARC 140e lObT 11076.523 5910.164 1.874 
4 Sun UltraSPARC 140e lObT 7538.262 3185.516 2.366 
8 Sun UltraSPARC 140e lObT 4654.274 1802.212 2.583 
2 Sun UltraSPARC 140e lOObT 10385.549 5480.389 1.895 
4 Sun UltraSPARC 140e lOObT 6387.522 2964.529 2.155 
8 Sun UltraSPARC 140e lOObT 3546.472 1708.583 2.076 

Table 3.4: Comparison of IPWindowMoments () in PIPT 1.0.3 and 2.1, with parameters window 
height = 9, window width = 9, and number of moments = 7. Here, Basetime is the time obtained by 
PIPT 1.0.3 and Newtime is the time obtained by PIPT 2.1. 

3.4.4   Array Reference Copying 

Copying an entire array can be expensive, particularly for large arrays. In general, array copies can be 
avoided by passing a pointer to the beginning of the array; this passes the array by reference rather than 
by value. Even when passing multi-dimensional arrays, although multiple pointers must be copied to 
pass by reference, the cost is still less than passing by value. 

Figure 3.10 shows a two dimensional array copy by value. Although the cost of the copy itself is large, 
if both arrays do not fit in the cache, the copied array will generate capacity cache misses when it is 
accessed later. Figure 3.11 shows a two dimensional array copy by reference. In this case, only the row 
pointers need be copied. Copying multi-dimensional arrays by reference only requires the lowest level 
pointers to be copied, or Nd~x pointers, where d is the number of dimensions in the matrix). Copying 
by value requires copying all the data, which is Nd copies. Table 3.5 shows the timing results for both 
cases. 

int   **x,   **y; 
// Allocate x and y to be contiguous C style 2D arrays 

for   (i  =   0;   i < N ;   i++) 
for   (j   =  0; j   < N;   j++) 

x[i] [j]   = y[i ] [j]; 

Figure 3.10: 2D array copy by value example 

Several PIPT image processing routines require the input pixel window to be stored row-wise in con- 
tiguous memory (see Figure 2.2 in Section 2.1.1). This class of routines typically involves a sorting 
algorithm. As such, each window of pixels passed to the window operator function must be copied by 
value from the input image to a pre-allocated window. This copy, since it is performed for every pixel 
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int **x, **y; 
// Allocate x to be a contiguous C style 2D array 
// Allocate y to be a »pointer skeleton" array, but do not 

// allocate any memory for the actual data 

for (i = 0; i < N; i++) 

x [ i ] = y [ i ] ; 

Figure 3.11: 2D array copy by reference example 

No optimization Full optimization 

Size(N) Value Reference Value Reference 

2 0.000822 0.000089 0.000818 0.000089 

4 0.000145 0.000088 0.000146 0.000088 

8 0.000142 0.000088 0.000144 0.000089 

16 0.000160 0.000088 0.000163 0.000090 

32 0.000213 0.000089 0.000213 0.000091 

64 0.000415 0.000091 0.000466 0.000091 

128 0.001149 0.000094 0.001078 0.000094 

256 0.004066 0.000102 0.003779 0.000102 

512 0.015756 0.000116 0.014320 0.000190 

1024 1 0.061220 0.000142 0.055736 0.000136 

Table 3.5: Copy by value /copy by reference examples 
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window passed to the window operator function, is quite expensive. 

But many other routines do not require the pixels to be stored in contiguous memory. For this class 
of routines, the window copy can be performed by reference. This can result in a substantial speedup, 
particularly for routines that are not compute intensive. Table 3.6 shows a performance comparison of 
of the PIPT 1.0.3 (which uses array value copies) and PIPT 2.1 (which uses array reference copies). 

Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 161.816 38.188 4.237 
2 Sun UltraSPARC 140e lObT 92.636 31.116 2.977 
4 Sun UltraSPARC 140e lObT 49.435 19.808 2.496 
8 Sun UltraSPARC 140e lObT 27.855 13.321 2.091 
2 Sun UltraSPARC 140e lOObT 81.814 23.441 3.490 
4 Sun UltraSPARC 140e lOObT 41.292 13.706 3.013 
8 Sun UltraSPARC 140e lOObT 21.315 8.182 2.605 

Table 3.6: Comparison of IPAverage () in PIPT 1.0.3 and 2.1, with parameters window height = 11 
and window width =11. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime is the time 
obtained by PIPT 2.1. 

3.5   Reducing Pipeline Stalls 

Pipeline architectures rely on instruction-level parallelism to achieve high performance. The number 
of hazards is reduced when instructions are are not dependent on each other, which allows them to be 
executed simultaneously in the pipeline. A simple and common technique to increase the amount of 
instruction-level parallelism available in a program is to exploit parallelism within the iterations of a 
loop (loop level parallelism). The following techniques can be applied to reduce pipeline hazards. 

3.5.1    Loop unrolling 

The main idea behind loop unrolling is to do more work per loop iteration such that the cost of branch- 
ing and testing the end condition (control hazards) is less significant. Branch prediction also reduces 
the number of control hazards. Moreover, unrolling can also reduce the number of data hazards by 
producing a series of independent instructions that can be reordered by the compiler in the most effi- 
cient way. Figure 3.12 is an example that calculates the sum of a group of numbers without unrolling. 
Figure 3.13 uses loop unrolling. Notice that in this example, temporary variables are used to avoid data 
dependencies. Table 3.7 shows the performance results. 

In the non-optimized code, a dependency exists (at the resultant variable) between two successive itera- 
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tions. The code cannot be overlapped in the pipeline execution. With branch prediction, this is can have 
more of an effect than control hazards. In the unrolled code, the loop iteration is replicated four tunes. 
In each iteration, the loop updates four sums separately. At the end of the loop, the partial sums are 
combined. Since the data in the four partial sums are independent of each other, they can be executed 
simultaneously in the pipeline. 

double  *x; 
// Allocate x array 

s = 0.0 
for (i = 0; i < N; ++i) 

s += x[i] ; 

Figure 3.12: Loop unrolling example 

double *x; 
// Allocate x array 
// assume N is divisible by 4 

sO = si = s2 = s3 = 0.0; 

for (i = 0; i < N; i += 4) { 
sO += x[i]; 
si += x[i+l]; 
s2 += x[i+2]; 
s3 += x[i+3]; 

s = sO + si + s2 + s3; 

Figure 3.13: Optimized loop unrolling example 

In the PIPT, most loops were implicitly left for the compiler to unroll. Maximum optimization settings 
for various compilers were included in the configuration script that enables the compiler to automatically 
unroll loops. Care was taken to ensure that loop indices were integer variables (i.e., int) to ensure that 
the compiler would be able to detect that a given loop is unrollable (see Section 3.6 about problems with 
automatic compiler optimizations). 
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No optimization Full optimization 
Size(N) Simple Unrolled Simple Unrolled 

128 0.000158 0.000165 0.000003 0.000001 
256 0.001914 0.000202 0.000005 0.000002 
512 0.005539 0.000224 0.000010 0.000004 
1024 0.012669 0.002056 0.000019 0.000007 
2048 0.026698 0.005629 0.000037 0.000013 
4096 0.055606 0.012738 0.000074 0.000025 
8192 0.112081 0.027401 0.000147 0.000056 
16384 0.225119 0.057218 0.000295 0.000111 

32768 0.455112 0.115569 0.000590 0.000223 

65536 0.907952 0.234818 0.001182 0.000455 
131072 1.829500 0.467329 0.002590 0.001186 
262144 3.686710 0.935831 0.007833 0.004969 
524288 7.362280 1.940970 0.015990 0.010211 
1048576 14.859200 3.819780 0.032143 0.020427 
2097152 30.173500 7.673090 0.064132 0.040855 

Table 3.7: Loop unrolling performance results 

3.5.2   Dependencies Elimination 

Dependencies in loop iterations can cause data hazards, which introduce stalls into the pipeline. Data 
dependencies can be eliminated by rearranging code as shown in Figure 3.14, the ith iteration of the 
loop references element [i - 10]. The loop is said to have a dependence distance of 10. To increase 
instruction level parallelism, the loop is unrolled (Figure 3.15). Because the recurrences in the loop do 
not depend on each other, they can be executed sequentially in the pipeline. 

The results show that the code from Figure 3.15 actually hurt performance. Compiler optimization 
is usually sophisticated enough to remove simple dependencies. The data dependency removal in the 
example got in the way of the compiler optimization. 

double *x; 
// Allocate x array- 

ford =10; i < N; ++i) 
x[i] = x[i-10] + x[i]; 

Figure 3.14: Dependency example 

A code review of the PIPT ensured that all possible dependencies were eliminated from all kernels and 
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double *x; 
// Allocate x array- 

ford =10; i < N- 
xti ] 
x[i+13 
x[i+2] 
x[i+3] 
x[i+4] 
x[i+5] 
x[i+6] 
x[i+7] 
x[i+8] 
x[i+9] 

= x[i-10 
= x[i-9 
= x[i-8 
= x[i-7 
= x[i-6 
= x[i-5 
= x[i-4 
= x[i-3 
= xti-2 
= x[i-l 

9; i += 10) { 
+ x[i ] 
+ x[i+l] 
+ x[i+2] 
+ x[i+3] 
+ x[i+4] 
+ x[i+5] 
+ x[i+6] 
+ x[i+7] 
+ x[i+8] 
+ x[i+9] 

Figure 3.15: Optimized dependency example 

Noo jtimization Full optimization 

Size(N) Simple No dependency Simple No dependency 

32 0.000005 0.000003 0.000001 0.000001 

64 0.000012 0.000007 0.000002 0.000002 

128 0.000025 0.000016 0.000003 0.000003 

256 0.000051 0.000034 0.000005 0.000006 

512 0.000103 0.000070 0.000009 0.000011 

1024 0.000495 0.000264 0.000019 0.000021 

2048 0.000796 0.000418 0.000037 0.000043 

4096 0.001078 0.000709 0.000074 0.000085 

8192 0.001959 0.001361 0.000184 0.000204 

16384 0.003735 0.002619 0.000368 0.000408 

32768 0.007221 0.005057 0.000738 0.000816 

65536 0.014298 0.010029 0.001474 0.001632 

131072 0.028565 0.020069 0.003204 0.003543 

262144 0.059179 0.042060 0.009088 0.009382 

524288 0.118369 0.084747 0.018401 0.020832 

1048576 0.236596 0.169488 0.036923 0.041700 

2097152 0.473548 0.338979 0.074038 0.083385 

Table 3.8: Dependency elimination performance results 
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routines. Since at least one compiler (KCC) has shown that it tends to hurt performance by unrolling 
to remove dependencies, most dependencies were simply noted in the code for possible future source 
code-level optimization. 

3.6   Architecture Specific Issues 

It is extremely difficult to write portable high performance software for a wide variety of platforms and 
operating systems. Vendors tend to have different (and sometimes conflicting) models and procedures 
for the same type of functionality. For example, there are a large number of "similar-but-different" 
examples between the two major versions of Unix, System V and BSD. The signal interface in C is 
a common example. Although programs in both flavors of Unix can receive asynchronous signals, 
the prototype for the user callback function is different. Authors of portable software must include 
conditional compilation structures such that the "right" pieces of code are compiled on each different 
system. 

Other factors make it difficult to write portable high-performance software, such as different compiler 
implementations, levels of standards conformance, and differences in underlying hardware. 

3.6.1    Compilers 

Even though two different compilers can take the same source code and each produce an executable 
that seems to function identically to the other, the internal structure of the two executables are probably 
quite different. In particular, optimization options tend to differ significantly between compilers. Native 
compilers, for example, will attempt to tailor code generation to optimize for speed for their particular 
operating system and hardware. 

However, there are many common techniques which are becoming standard in most compilers, such 
as loop unrolling, loop invariant extraction, and dead code removal. But even these simple techniques 
require significant analysis on the part of the compiler, and, more importantly, the compiler writer. Just 
like with other marketable software, compiler writers have to test and debug their code, include new 
features, and meet release deadlines. Since compiler features are largely driven by user requests, they 
are typically prioritized by how many users ask for each feature. As such, the most common and obvious 
features are included in the compiler, while more subtle or involved features are not. Indeed, a particular 
feature can be included in a release, but simple derivations ofthat feature are not. 

Examples of this are evident in the Sun Workshop C compiler (version 4.2). This compiler will only 
unroll loops that have signed integer indices, and have a condition test in the form of "index < 
constant". The compiler will not unroll the loop if, for example, the primary index is an unsigned 
integer, or a long (signed or unsigned), or if the condition test is not "<". 
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Whüe changing the compiler to automatically unroll loops in all of the conditions listed above is prob- 
ably a fairly simple operation, it would probably take a compiler writer at least a day to implement the 
necessary changes, write the necessary documentation, and fully test the new code. Having the compiler 
automatically unroll most kinds of loops is arguably a good feature to have, but a programmer can man- 
ually unroll loops and achieve the same result as if the compiler had unrolled it. Compiler writers spend 
their time implementing more difficult and involved features, particularly ones that cannot be worked 
around by the user. 

Therefore, the only way to ensure that common source-code optimizations are performed on all ar- 
chitectures is to perform them manually. In the PIPT, several source code modifications (described in 
Sections 3.4 and 3.5) were included to ensure that, regardless of the underlying compiler, several types 
of source code optimizations are always performed. 

3.6.2    Standards Compliance 

Differences in numerical precision can also hinder portability of scientific code. Two possibilities exist 
if the same source code generates different numerical answers on different types of machines: 

• Problems exist within the hardware, operating system, or compiler, or 

• Problems exist within the user code 

Experience has shown that user code is usually at fault. 

Fortunately, most modern microprocessors implement the 1985 IEEE standard for floating point mathe- 
matics [13], meaning that most numerical precision problems are probably the fault of the programmer. 
This is not to say that bugs affecting numerical precision do not exist; Figure 3.16 shows a code snipit 
that produces different answers on different machines. Table 3.9 lists several architectures and the re- 
sults of the code show in Figure 3.16. 

#include <math.h> 

double x = 0.0; 
printf("Arc tangent of 0.0 is: %f\n", atan2(x, x)); 

Figure 3.16: Software precision example 

In particular, it was discovered that OSF Unix v2.0 and OSF Unix v3.2 running on Dec Alpha hardware 
did not adhere to the 1985 IEEE standard for floating point mathematics. The PIPT therefore failed its 
test suite on these two operating systems, because the mathematical rules used to generate some of the 
results were different than on all other supported architectures. As a result, the PIPT was declared not 
to be compatible with OSF 2.0 and 3.2 (see Section A.2). 
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Architecture Operating System Compiler Result 
Sun UltraSPARC Solaris 2.5.1 Workshop v4.2 0.0 
IBMSP AEX4.1.1 xlcv2.0.1.14 0.0 
SGI Origin 2000 IRIX 6.4 MlPSpro cc v7.2 0.0 
DEC Alpha OSFv4.0 DEC C V5.2-036 0.0 
Convex 3820 ConvexOS 11.5 CONVEX CCv5.0 7T 

2 
HP Apollo HP-UX 10.20 HP C Compiler A. 10.32.03 NaN 

Table 3.9: Results of atan2 (0.0,   0. 0) on different systems 

3.6.3   Underlying Hardware 

Most complex software systems include some architecture-dependent code; differences for underlying 
hardware must be accounted for in some layer of the software. In order to attain high performance, 
software must be aware of the underlying hardware and operating system. This adds complexity to 
portable software packages. 

For example, the PIPT uses MPI to effect message passing. While there are public domain implementa- 
tions of MPI that compile on many different architectures, these packages have sophisticated conditional 
compilation structures that select the right code for the underlying hardware and operating system. Typ- 
ical public domain MPI implementations include code for socket-based (TCP/IP) message passing as 
well as POSDC shared memory calls. MPICH, a public domain implementation from Argonne National 
Laboratory [7], currently includes conditional compilation for twenty-seven different operating systems 
and eight different message passing models. 

Some hardware differences between systems can be prohibitive to group parallel computations. On 
a DEC Alpha, the size of a long in C is eight bytes; on all other PIPT-supported architectures, the 
size of a long is four bytes. Special provisions had to be inserted in the message passing layer in the 
PIPT to convert from four to eight bytes (and vice-versa) when a DEC Alpha is used in heterogeneous 
environments. This conversion is slightly slower, but this penalty was judged to be worthwhile since it 
allows faster Alpha machines to run with potentially slower workstation machines. 

3.7   Multithreading Strategies 

The current PIPT implementation includes threading on SMP workers. When a SMP worker receives a 
slice, it divides it into n sub-slices, where n is the number of CPUs in the machine, unless overridden 
by the user, n threads are created to process the sub-slices. The threads operate on their sub-slice inde- 
pendently of the other threads, and die when they are finished. Figures 2.10 through 2.12 (Section 2.2) 
show this scheme. 
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3.7.1   Counting Workers 

It would seem natural to classify each CPU in an SMP machine as a worker itself. This would raise 
the total number of workers, and reduce the amount of work given to non-SMP workers. Every CPU 
(as opposed to every machine) would then receive an equal amount of work. Table 3.10 lists a sample 
heterogeneous configuration with two workstations and two SMP's, and compares the percentage of the 
input image that each worker would receive in both the current PIPT implementation and this proposed 
scheme. 

Worker type 
Number 
CPU's 

Number of workers 
By machine    By CPU 

Workstation 
Workstation 
SMP 
SMP 

1 
1 
2 
4 

1 
1 
1 
1 

1 
1 
2 
4 

Total numbe 
Slice % of or 

r of workers: 
iginal image: 

4 
25% 

8 
12.5% 

Table 3.10: Comparison of slice size when counting workers by machines available and by CPU's 
available 

When counting workers by the number of machines available, SMP's will finish faster and sit idle while 
waiting for the workstations to finish (load balancing helps this situation, see Chapter 4). But when 
counting workers by the numbers of CPU's available, every CPU receives the same amount of work, 
and all finish at approximately the same time. No worker needs to idle while waiting for another worker 
to complete its slice. 

Unfortunately, giving each CPU its own slice entails significant restructuring of the internal PIPT slice 
distribution and collection engine. While the analysis of this feature indicates potential speedup from 
its implementation, it was not the focus of this work, and was not implemented. 

3.7.2   Thread Safety 

Since a PIPT worker may be running on an SMP, the PIPT uses multiple threads to process a single 
image slice. As such, the target image processing routine's window operator routine may be invoked 
multiple times concurrently on a single memory image. This means that the window operator routine 
must be thread safe, or the results will be undefined. 

Thread safety usually entails ensuring that a particular instance of a function either only uses local 
resources or has exclusive use of global resources. Local resources generally means that automatic 
variables should be used in the routine, and that the static identifier should not be used, as this would 

37 



only create one instance of a variable that is shared across multiple instances of the function. 

However, shared local (or global) resources can be used provided that mutual exclusion is ensured. The 
PIPT provides wrappers to the operating system mutual exclusion locking system (see the manual pages 
for PlPT_Mutex et al. in the PIPT distribution), but care must be taken in designing mutual exclusion 
algorithms to ensure that the process is not serialized. For example, the code in Figure 3.17 is essentially 
serialized. Even if multiple threads invoke the f oo () function more-or-less simultaneously, only one 
thread is allowed in the critical section at a time. Thus, any gains from parallelizing this function are 
effectively lost. 

void foo() 
{ 
static double bar; 
static PIPT_Mutex mutex; 

PIPT_Mutex_lock(mutex); 
// Some operation on bar 
PIPT_Mutex_unlock(mutex); 

} 

Figure 3.17: Example function that, even if invoked with multiple threads, will still run in serial 

Once the multi-threaded workers were implemented, all image processing window operator routines 
were examined and made thread safe. 

3.7.3   Problems With Multithreading 

Unfortunately, the only existing thread safe MPI implementation is IBM's native MPI, which only runs 
on the IBM SP series of machines. Section 4.4 discusses a particular problem related to multithreading 
and load balancing on SMP's which entails the need in the PIPT for a thread-safe implementation of 
MPI. 

Additionally, the extra memory copy that is avoided on SMP workers by the use of multithreading was 
problematic on SMP managers. When the manager is an SMP, Section 2.2 discusses how the worker 
that co-resides on the same machine need not have a slice sent to it via MPI - it can simply use the 
slice in place (since the manager and worker share the same memory space, the worker can use the slice 
that already exists in the manager's memory space). However, this scheme requires a thread-safe MPI 
implementation, which is not freely available. So the slice must be copied to a separate buffer for the 
worker to process, even though the manager and worker share common memory. 
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3.8    Slice Distribution 

In the PIPT, input images are broken into multiple sections (commonly referred to as "slices"). These 
slices are distributed by the manager to the workers who perform the image processing computations, 
and then send their slices back to the manager. Combined with the different load balancing schemes 
(see Chapter 4), the slicing scheme adapts well into different computing environments, especially active 
heterogeneous workstation clusters. 

Each worker currently receives one slice at a time to process. In view of different compute speeds 
in a heterogeneous situation, it would be advantageous to have the manager adaptively size the slice 
that is sent to a given worker based upon the worker's past performance, perhaps as a function of 
pixels processed per second. While past performance does not predict future performance, this adaptive 
heuristic paired with the RFFFS load balancing algorithm could yield good results. 

However, implementing the differently-size slices would require a different internal model than the 
PIPT currently implements. Significant portions of the opaque transport mechanism would have to be 
restructured to support such a scheme. 

Sending differently-sized slices to workers can be viewed as sending multiple single-row slices. Un- 
fortunately, taking this approach also entails significant re-coding of the opaque transport mechanism 
in the PPT Therefore, in the current version of the PIPT, each worker still only receives one slice at a 
time. 
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Chapter 4 

Load Balancing 

4.1    Overview 

To extract maximum performance and efficiency from a parallel computing environment, it is critical 
that the workload be properly distributed among the processing nodes. Since the entire parallel compu- 
tation cannot be completed until all nodes have completed their portion of the overall task, the parallel 
computation will be limited by the slowest processor. A single processor taking longer to complete its 
task than the other processors will hold up the entire parallel computation. 

In an ideally distributed parallel computing task, all the processing nodes will complete their tasks 
at precisely the same time. In active heterogeneous workstation clusters, this is difficult to achieve; 
workstations have different clock speeds, different amounts of RAM, etc. Additionally, the CPU load 
on a workstation can change frequently during a single parallel run due to irregular user usage patterns. 

The goal of load balancing is to partition the parallel task in such a way that each processor will work 
for approximately the same amount of time, but not necessarily perform the same amount of work. 
The PIPT incorporates three different load balancing algorithms: no load balancing, simple first-finish, 
first-serve (FFFS), and redundant first-finish, first-serve (RFFFS). FFFS and RFFFS have additional 
parameters which can be used to adjust performance for different types of environments. The different 
algorithms are discussed below. 

4.2   No Load Balancing 

This algorithm is best suited for use on dedicated parallel hardware. Since all nodes will have the same 
compute power available for the length of the entire run, distributing the work evenly across the worker 
nodes makes the most efficient use of computing resources. In this case, the PIPT only divides the 
work up into as many slices are there are worker nodes; each worker receives one slice to process. The 
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data flow is similar to that shown in Figure 2.8 (page 11). Pseudocode for this algorithm is shown in 

Figure 4.1. 

/* Divide the  input  image up into slices  */ 
input^slices «- divide_image (input Jmage,   numjworkers) 

/*  Send the slices to the workers  */ 
for i «— 1... numjworkers 

send (i, input jslices[i]) 

/* Receive the processed slices back into the output  image  */ 

for i <- 1... num.workers 
who <- wait_f or_returned_slice () 
receive (who, outputjslices]who]) 

Figure 4.1: No load balancing algorithm 

Since each node is equivalent, they are each given the same amount of work. It is expected that all 
workers will finish in approximately the same amount of time. 

4.3   First-Finish, First-Served (FFFS) 

It is frequently desirable to run in environments where the compute power of each node is not equiva- 
lent. Clusters of heterogeneous workstations naturally have different compute speeds. Clusters are also 
usually shared resources; other users may be running programs on the workstations that the PIPT is 
running on. As such, the PIPT will be competing for CPU cycles. 

The FFFS load balancing algorithm divides the work into more sections than there are nodes available. 
A heuristic in the PIPT initially divides the work into 3 x num.workers sections, but this setting can 
be changed by the user. Each node is initially given a section of the work to process. The faster (or 
less loaded) nodes will naturally finish their section quickly, return it to the manager, and request more 
work. The algorithm for FFFS is shown in Figure 4.2. 

In this manner, a fast worker may process multiple slices in the time that it takes a slow (or loaded) 
worker to process one slice. Since the run is limited by the slowest node, the FFFS algorithm gives 
more work to faster nodes and less work to slower nodes. 
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/* Divide the input  image up into slices  */ 
input slices <- di vide_image (input Jmage,   numslices) 

/*  Send the  first nunuworkers slices  to  the workers  */ 
for sendjnum 4- 1... num-workers 

send (sendsium, input slices[sendjnum]) 
send-num «- sendjnum + 1 

/* Receive the slices back from the workers  */ 
for i <— 1...  length(inputslices) 

(who, slicejnum)   4- wait_for_returned_slice () 
receive (who, outputslices[slicejnum]) 

/*  Send another slice  if there are any left  */ 
if   (sendjnum <= numslices) 

send (who, input slices[sendjnum]) 
sendjnum <- sendjnum + 1 

Figure 4.2: First-Finish, First-Serve load balancing algorithm. 

4.4   Redundant First-Finish, First-Served (RFFFS) 

FFFS, while it will usually outperform no load balancing in heterogeneous or unevenly loaded situations, 
can still end up waiting for a slow node at the end of the computation. In some cases, a slow node can 
be assigned another section of work just before all the other sections are completed. The job must then 
wait for the slow node to finish its slice, even though the other nodes are idle. 

Redundant FFFS is an extension to the original FFFS algorithm. It exploits a special case in the FFFS 
algorithm that occurs when a worker node returns a slice and all remaining work sections have already 
been distributed to other workers. In this situation, FFFS lets the worker remain idle until the end of the 
run. This is wasteful if fast nodes return their slices while a slow nodes are still processing their slices; 
the fast nodes sit idle waiting for the slow nodes to finish. 

Instead of letting the fast worker node sit idle, RFFFS gives the workers another slice of work. The 
section of work is already being processed by some other worker node (since all remaining work sections 
have already been distributed). That is, multiple worker nodes are processing the same slice. 

In this way, fast worker nodes can be assigned the same work that a slow worker is processing. The 
fast workers will finish the section first and return it to the manager, thereby ending the computation 
(without having to wait for the slow node to finish). Pseudocode for the RFFFS algorithm is shown in 
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Figure 4.3. 

There are additional details that are not shown in Figure 4.3; the f ind_unf inished-slice () rou- 
tine needs to not only find an unfinished slice, but one with the shortest redundant_workers_list 
(i.e., the slice that has the least number of workers already processing it) in order to prevent clustering 
of redundant work. 

The receipt of the abort message requires asynchronous message receives, which can be implemented 
with multi-threading message passing code in the workers. That is, the worker must simultaneously 
block on the potential receipt of an abort message (via MPI) and process its slice at the same time. Un- 
fortunately, there are no MPI implementations for workstation clusters that are thread safe, so blocking 
on the receipt of a message while processing a slice was not possible. As such, the abort signal was not 
implemented into the current version of the PIPT. 

Instead of aborting the worker nodes, the manager places the redundant workers in a "working" state. 
When the entire input image has been processed, the manager returns the output to the calling function, 
regardless of whether the redundant nodes have completed their sections or not. The redundant nodes are 
reclaimed later; when a redundant node finally attempts to return its processed (but now outdated) slice, 
the manager ignores the slice and tells the worker to join the current computation. These complexities 
are only required because MPI implementations are not thread safe, and are not shown in Figure 4.3. 

4.5    Comparison of Algorithms 

The PIPT works well without load balancing on dedicated parallel hardware; there is no need for the 
additional overhead of load balancing when all the compute nodes are both equivalent in compute power 
and dedicated to the PIPT job. But in an active heterogeneous workstation cluster, this algorithm per- 
forms poorly. Figure 4.4 shows a timing plot of a run with no load balancing on an active workstation 
cluster. The horizontal lines represent the manager and the workers; the top line is the manager, the 
bottom four lines are the workers. Vertical lines represent messages between processors. Green areas 
indicate computations contributing to that worker's slice; red areas indicate blocking in message passing 
calls. 

It is clear from Figure 4.4 that in an active workstation cluster, run times can be very large without load 
balancing. Figure 4.5 shows the PIPT using FFFS on the same workstation cluster. 

The FFFS algorithm shows a marked improvement in performance over no load balancing, but worker 
2 still delays the end of the computation. Figure 4.6 shows the PIPT using the RFFFS algorithm on 
the same workstation cluster. Workers 1 and 4 both perform more work than workers 2 and 3, but also 
redundantly process the same slices as workers 2 and 3, resulting in a shorter run time for the overall 
computation. 
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/* Divide the  input  image up into slices  */ 
inputslices •<— divide_image (inputImage,   numslices) 

/*  Send the  first num_workers slices  to  the workers  */ 
for sendjnum <— 1... num.workers 

mark_not_done (inputslices[sendjnum)) 
add_to_list (sendjnum,inputslices[sendjnum\.redundantjworkerslist) 
send (sendjnum, inputslices[sendjnum]) 
mark_as_working (sendjnum) 

sendjnum •<— sendjnum + 1 

for i <- 1... numslices 
(who,slicejnum)   «- wait_for_message () 

/*  If  the node has a slice  to return,   receive it,   and send 
abort messages to redundant workers  */ 

if   (marked_as_working (who) ) 
receive (who, outputslices[slicejnum]) 
mark_done (inputslices[slicejnum]) 
remove_f rom_list (who, inputslices[slicejnum].redundant-workerlist) 
send_abort_messages (inputslices[slicejnum].redundantJworkerJist) 
mark_as_idle (inputslices[slicejnum].redundantJworkerJist) 

/*  Send another slice if  there are any left  */ 
if   (sendjnum <= numslices) 

add_to_list (who,inputslices[sendjnum].redundantJworkersJist) 
send (who, inputslices[sendjnum]) 
mark_as_working (IU/IO) ) 
sendjnum <— sendjnum + 1 

/*  If all  slices have been distributed,   send out a redundant 
slice  */ 

else  if   (count_how_many_done (inputslices)   < numslices) 
num <-  f ind_unf inished_slice (inputslices) 
add_to_list (who,inputslices[num].redundantjworkersJist) 
s end (who, inputslices [num]) 
mark_as_working(io/io) ) 

Figure 4.3: Redundant First-Finish, First-Serve load balancing algorithm 
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0 sec 175 sec 

Figure 4.4: A PIPT run with no load balancing on an active workstation cluster. Workers 2 and 3 are 
heavily loaded, and delay the completion of the computation. 

Osec 94 sec 

Figure 4.5: A PIPT run using FFFS load balancing on an active workstation cluster. Workers 2 and 3 
are heavily loaded, but workers 1 and 4 compensate by processing more slices than workers 2 and 3. 

0 sec 85 sec 

Figure 4.6: A PIPT run using RFFFS load balancing on an active workstation cluster. Workers 2 and 
3 are heavily loaded, but workers 1 and 4 compensate by performing more work than workers 2 and 3, 
and then redundantly processing the final slices of workers 2 and 3. Notice that workers 2 and 3 keep 
computing even after the manager finishes the computation. 
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4.6   Communication Costs 

The PIPT uses a manager/worker paradigm, in which the manager receives the input image, partitions 
the work, distributes the image slices to the workers, and finally gathers the processed slices back from 
the workers. Sending and receiving the image slices across an interconnection network incurs some de- 
lay which contributes to the overall wall-clock execution time. Two factors which contribute to network 
overhead are latency and the speed of the network. 

While many workstation networks operate at 10Mbps, faster speeds, such as 100Mbps and 155Mbps, 
are becoming more common. Naturally, since the PIPT sends large messages across the network, a fast 
underlying transport will reduce the amount of overhead incurred while processing images in parallel. 

4.6.1    Latency 

Figure 4.7 illustrates the costs of sending messages using MPI in a workstation cluster environment. 
Messages of sizes from 1 to 1,048,576 bytes (1 Mbyte) were sent from manager to worker on 10Mbps 
and 100Mbps switched ethernet networks, as well as a 155Mbps ATM network. Note that the cost 
for the smaller messages is dominated by latency time (approximately 0.5 milliseconds), but that for 
larger messages, the cost becomes linearly proportional to the message size. One conclusion that can 
be drawn is that in workstation cluster-based computation, one should strive to minimize the number of 
communication operations and at the same time, one should maximize the size of the messages that are 
sent. 

Figure 4.7 shows the peak MPI bandwidths of the 10Mbps, 100Mbps, and 155Mbps networks to be ap- 
proximately 8.3Mbps, 81.1Mbps, and 113Mbps, respectively. But notice that the latency for 100Mbps 
is somewhat lower than for 10Mbps or 155Mbps. This is probably due to differences in Solaris network- 
ing drivers; while all machines were UltraSPARC 140e's running Solaris 2.5.1, the machines where the 
10Mbps tests were run were at a different operating system patch level than the machines that ran the 
100Mbps tests. Even though the same machines ran both the ATM and 100Mbps tests, the higher ATM 
latency can also be explained through operating system network drivers; the ATM driver goes through a 
TCP/IP stack followed by an internal ATM protocol stack. 

4.6.2   Network Speed 

The input image is scattered to the workers, and then the output image is gathered back to the manager. 
Since the output input size is frequently the same as the input image size, the amount of data transmitted 
across the network is usually twice the size of the input image. For a given message size and network 
speed, the theoretical time required for transmission can be calculated by 
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Figure 4.7: Time required to assemble and send messages of different sizes on 10Mbps, 100Mbps, and 
155Mbps workstation networks. 

.    , 8 bits      1 second      , .... 
size bytes * — * —— = transmission time 

1 byte    speed bits 

For example, to send 1,048,576 bytes (1 megabyte) across a 10Mbps network 

8 bits 
1,048,576 bytes * ——— * 

1 second 
1 byte    10,485,760 bits 

0.8 seconds 

But these formulas represent an ideal case; they do not take into account physical processing speeds, 
network congestion, protocol overhead, etc. Using Sun UltraSPARC workstations running Solaris 2.5.1, 
timing tests were conducted on 10Mbps and 100Mbps switched ethernet networks, and a 155Mbps ATM 
network. The public domain software nt tcp was used to measure sustained bandwidth by sending 219 

8192 byte packets (a total of 4 terabytes, the most that nttcp could handle) between two nodes on 
the same LAN segment. Table 4.1 shows both the time necessary to send the data, and the sustained 
bandwidth. 

Table 4.1 also shows that ethernet networks typically cannot sustain their peak bandwidths. While the 
ATM network can sustain a bandwidth very close to its peak (147.77Mbps), ATM hardware is still very 
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Network type 
10Mbps switched ethernet 
100Mbps switched ethernet 
155Mbps ATM  

Time 
36:44 

3:34 
2:32 

Sustained bandwidth 
7.24 Mbps 

74.86 Mbps 
144.77 Mbps 

Percent of peak 
72.2% 
74.9% 
93.4% 

Table 4.1: Comparison of sending 219 packets 8192 bytes each (for a total of 4 terabytes) across different 
types of networks. 

expensive compared to ethernet. Using a 7.24Mbps sustained average for a 10Mbps ethernet, we can 
recalculate the actual transmission time for 1 megabyte 

8 bits 1 second 
1,048,576 bytes * — * 7591)690 bits 

= 1.1 seconds 

File Size 10Mbps 100Mbps 155Mbps 

big.tif 
color.tif 

8,962,934 bytes 
4,608,604 bytes 

18.89 
9.71 

1.83 
0.94 

0.94 
0.49 

Table 4.2: Comparison of round-trip transmission times (in seconds) of files across different speed 
networks using sustained peaks of 7.24Mbps, 74.86Mbps, and 144.77Mbps. 

Table 4.2 shows a comparison of round-trip transmission times for two large images, calculated with 
average peak sustained rates from Table 4.1. The table shows that faster networks can significantly re- 
duce the overhead time necessary for scattering and gathering images. The big. tif file takes nearly 
19 seconds to transmit (in raw TCP/IP) on a 10Mbps network, but less than half a second on the ATM 
network. These times will be slightly higher transmitting the same data in MPI, since MPI protocols 
add some overhead and decrease peak bandwidth (see Figure 4.7). This is important because this trans- 
mission time is counted towards the overall wall-clock time for a given PIPT routine. That is, even if the 
worker nodes are extremely fast machines, any PIPT routine that distributes an input image and gathers 
an output image processing big. t i f will take a minimum of 19 seconds on a 10Mbps network due to 
network transmission time. 

4.7   Work Sharing on the Manager 

In previous versions of the PIPT, the manager node was dedicated to distributing and gathering image 
slices from the workers. Slice management tends to occur in bursts, with long periods of inactivity 
in between (especially with larger images, or when not using load balancing). This is a waste of the 
manager's compute resources.   For example, running the PIPT 1.x with no load balancing on four 
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unloaded workstations on a local area network, only three would actually be performing the image 
processing calculations. 

The PIPT 2.1 now launches a worker on the manager node. In the above mentioned example, all four 
workstations now contribute to the image processing calculations. This is a much more efficient use of 
computing resources, since the input image is divided into four slices instead of three; each worker will 
have over 8% less work to perform. 
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Chapter 5 

Parallel High Resolution Video Stills 

5.1    Overview 

Accurate image expansion is important in many areas of image analysis. To generate precise maps of the 
Earth's surface, cartographers must expand small regions of satellite image data. In medical imaging, 
computerized tomography slices and X-rays may need to be zoomed to search for anomalies. Recon- 
naissance photographs must be expanded accurately to show hidden details of weapon manufacturing 
plants and landing strips. 

High Resolution of Video Stills (HRVS) addresses how to utilize both the spatial and temporal informa- 
tion present in a short image sequence to create a single high-resolution video frame. HRVS includes 
two stages: Motion Detection and Bayesian maximum a posteriori (MAP)1. In the motion detec- 
tion stage, motion vectors between central frame and neighboring frames are computed. In the MAP 
stage, the motion vectors extracted from neighboring video frames are then used to constrain the MAP 
algorithm, and a high resolution frame then will be generated. 

HRVS shows visual and quantitative improvements over bilinear, cubic B-spline and Bayesian single 
frame interpolations, which could be used for integrating multiple frames form cockpit or gun video to 
enhance video frames of interest for exploitation. 

Because of the large data set size of the resulting high resolution image data, and the computation- 
intensive algorithms such as displacement vector detection, the serial implementation of HRVS typi- 
cally takes hours to finish. Therefore, high-speed implementation of image expansion algorithms is a 
critical requirement. The high degree of data locality and inherent parallelism in most image expansion 
algorithms gives the possibility of parallel implementation. 

The basic algorithm for single-frame or multi-frame expansion was proposed by Dr. Robert L. Stevenson 
and Dr. Richard R. Schultz [16,17]. It uses the Huber-Markov random field (HMRF) model to represent 
piece-wise smooth data, and displacement vectors are obtained by a hierarchical motion detector. 

'MAP is a stochastic regularization technique to deal with the ill-posed interpolation problem 
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In this report, we describe the design of the Parallel HRVS (PHRVS) as a library interface, and we give 
testing results for both accuracy and performance. 

The PHRVS uses the Parallel Image Processing Toolkit (PIPT) [15] as the basic developing tool in 
order to achieve parallelism. The Visual Instruction Set2 is used to implement the Mean of Absolute 
Difference (MAD) to achieve instruction level parallelism. 

5.2   Libraries Used in PHRVS 

5.2.1 Parallel Image Processing Toolkit 

The Parallel Image Processing Toolkit (PIPT) was developed by the Laboratory for Scientific Computing 
at the University of Notre Dame. It is a scalable, extensible and portable collection of image processing 
routines which uses the message passing model based on the Message Passing Interface (MPI) standard, 
and is specifically designed to support parallel execution on heterogeneous workstation clusters. The 
PIPT takes advantage of the standard pattern of image/video processing, and hides the parallelism from 

the library user. 

In the latest version of the PIPT (2.1), some new features were added in order to handle the video 
processing. The most important one that image frames can be registered together, and PIPT treats them 
as an integrated group and distributes them onto worker nodes in a persistent manner. 

The new thread APIs in PIPT-2.1 are also used to add multithreading into PHRVS. 

This shows that the PIPT is flexible enough to handle video processing. The programming paradigm 
used in the PIPT video processing routines is similar to PIPT image processing routines, so a PIPT 
programmer can write video processing easily using the PIPT-2.1. 

5.2.2 Visual Instruction Set 

The Visual Instruction Set (VIS) is a set of RISC instructions which are extensions to the SPARC V9 
architecture and are designed to accelerate multimedia, image processing, and networking applications. 
VIS can use four 16-bit adders and four 8x16 multipliers simultaneously. This kind of parallelism 
(instruction level parallelism) can be used to gain image processing performance without suffering the 
overhead of data communications. 

2The Visual Instruction Set (VIS) is a set of RISC instructions which are extensions to the SPARC V9 architecture and are 
designed to accelerate multimedia, image processing, and networking applications. 
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5.3    Design 

5.3.1    Distributed Memory Parallelism 

By using the PIPT, PHRVS can gain parallelism without exposing the details of parallel implementation 
to user. 

In a single frame image expansion routine, the input image is partitioned and distributed by the PIPT 
kernel to several worker nodes. The resulting expanded sliced images from these worker nodes are 
finally combined together in the manager node, which then returns one expanded image back to user. 

Normal image expansion algorithms can be parallelized easily using this method. However, the MAP 
expansion algorithm is more difficult to parallelize. This is because the key operation of MAP is to 
minimize a global function using the method of steepest descent. Thus, one output pixel depends on 
all the pixels of the input image. This kind of dependency makes parallelism hard to apply. If we 
simply slice and distribute the image evenly, the resulting image may not match the serial result (this 
problem is more obvious on the edge pixels of the sliced image). Although this means we will not get 
the same result in parallel as in serial, we can take advantage of the locality property of the image3 and 
apply the MAP method in parallel without suffering too much accuracy loss. This is done by sending 
some extra overlap rows to the worker nodes. The worker nodes will do some redundant computation 
on these overlap rows, but more information will be present to expand the sliced image, especially for 
the edge pixels, and the result will be acceptable. Some experiments we have done show that if six 
overlap rows are used, the SNR difference between parallel and serial results is less than 0.1, which 
means no observable difference to a human viewer. Although a large number of overlap rows can be 
chosen, it is usually not practical, since the redundant computation on overlap regions will hurt the 
overall performance of PHRVS. 

In the video stills expansion routine, the whole process is split into two separate stages. In stage one, 
the displacement vectors are detected in parallel. In stage two, after the manager gets the whole dis- 
placement vector, it redistributes both the image sequences and the corresponding displacement vector 
field. With the image sequence and displacement vectors, the worker node will use a multi-frame MAP 
to expand the image slice. The expanded image slices are combined together in the manager node and 
returned to the user. Again, some overlap rows are added to the slices sent to each worker node. 

The reason to separate PHRVS operation into two stages and parallelize them separately is that the mo- 
tion detection operation fits well into the standard PIPT communication pattern, while the MAP expan- 
sion operation has to be treated specially using the method introduced above (by using the overlapping 
rows). 

3 One output pixel usually depends on the whole input image; the effect of all the pixels in input image on an output pixel, 
however, can be different. Usually, only a small region of an input image will effect a given output pixel - pixels elsewhere 
typically have no (or very little) impact on the output image. This is called locality property of image processing. 
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5.3.2 Instruction Level Parallelism 

MAD (mean absolute difference) is an important routine used to estimate block motion between image 
sequences. The multi-frame MAP algorithm spends nearly 90 percent of its processing time on MAD. 
MAD is the hotspot for all kinds of block matching algorithms (in our multi-frame MAP, we use the 
hierarchical sub-pixel motion estimation algorithm to extract the displacement vector between image 
sequences) since it is used in the inner loop of computation. VIS can be used to implement MAD in 
order to achieve almost four times speedup. 

5.3.3 Shared Memory Parallelism 

For the symmetric multiprocessor architecture, we can take advantage of the existing shared memory 
to avoid the relatively slow network data communications. This will give better performance, and the 
programming will also be easier than for a distributed system. 

Multithreading is a common programming paradigm for multiprocessors, and our PHRVS is multi- 
threaded to take advantage of multiprocessor architecture, if it is available. PIPT offers a multithreaded 
computing kernel, which means the standard PIPT routines can have multithreading for free. However, 
PHRVS does not use a standard PIPT computing kernel, thus multithreading had to be done explicitly. 

Based on the pipeline-like dataflow property of HRVS, no single busy loop can be located; threading 
cannot be simply applied to one single loop in order to get better performance. The implementation of 
Solaris threads is such that the operating system will not allocate a processor for a particular thread until 
the thread convinces the operating system that it is computationally intensive. This means that creatmg 
a thread for each loop would not be effective. In such an implementation, the threads would be very 
short lived, so they would not have time to move to another processor. As a result, most computation 
would still be in serial. 

The better approach for multithreading PHRVS is to do the thread creation at a higher level. When the 
multiprocessor machine gets an image slice from the PIPT manager, it will further slice the incoming 
image into several slices, then create one thread for each slice to do the PHRVS computation. When 
all the threads finish the computation, all the resulting outputs are collected and combined together to 
generate the output, and transfer back to the PIPT manager. In short, a foreman process is running 
on each worker node, which further slices the incoming image and spawns threads to work on them in 

parallel. 

The performance data shows that multithreading achieves good speedup on a multiprocessor machine, 
and is closer to a linear speedup than the distributed system for small numbers of processors. 
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5.4   Stand-alone application 

A PHRVS application is written using PHRVS library routines; it accepts standard command line argu- 
ments. 

5.5   Library Routines 

5.5.1   Parameter Data Structure 

Parms is a structure used to hold and transfer parameters needed by HRVS routines. Its definition is 
shown in Figure 5.1. 

typedef struct ( 
int h;     /* height                              */ 
int w;     /* width                               */ 
int q;     /* expansion factor                    */ 
FP T;      /* Huber edge penalty function threshold */ 
int maxit; /* maximum # of iterations             */ 
FP stop;   /* stopping criteria for gradient 

projection algorithm                */ 
int window_smooth; /* size of smooth window        */ 
int window_count; 
FP T_ch;    /' k  threshold used in UPD              */ 
FP T_ob; 
int border; 
int spacing; 
int p;      /' "  frame, default =5                 */ 
int d;      /' * block, default =9                */ 
int frames; /' "  # of frames, default =3            */ 
FPL;       /* lambda = L/|l-k|                    */ 
int pan;    /* indicate pan or motion estimation   */ 
int interlace • /* indicate PROGRASSIVE or INTERLACED 

sequence. */ 
int field;  /* indicate the first frame of interlaced 

sequence is even or odd. 
0 - EVEN, 1 - ODD */ 

} Parms ; 

Figure 5.1: PHRVS parameter setup 
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Four routines are defined that allocate and initialize, free, print and copy the Parms structure: 

Parms* PHRVS_allocParms (int h, int w, int q, FP T, int maxit, 
FP stop, int window_smooth, int window_count, 

FP T_ch, FP T_ob, int border, int spacing, 

int p, int d, int frames, FP L, int pan 

int interlace, int field); 

void PHRVS_freeParms(Parms *p) ; 

void PHRVS_printParms(Parms *p) ; 

void PHRVS_copyParms (Parms *from, Parms *to) ; 

5.5.2 Single Frame MAP 

One routine is defined to perform a single frame MAP: 

IMAGE* PHRVS_Pmap(IMAGE *inImage, Parms *parms); 

The routine takes one input image and the MAP parameters, and returns the expanded image. The 
parallelism is hidden inside the routine. 

5.5.3 Displacement Vector Detector 

The following routine is defined to perform displacement vector detection: 

MotionVectors* PHRVS_Pmotion(IMAGE *inlmage[], Parms *parms); 

It takes an input image sequence and parameters, generates a packed displacement vector structure. A 
packed D-vector structure can be accepted by the PHRVS routine. It can also be dumped into a file or 
loaded from a file using the following two routines: 

void PHRVS_dumpVector (MotionVectors *v, int dim, int h, int w, 

char *file_name); 

MotionVectors* PHRVS_loadVector(char *file_name, int dim, int h, 

int w); 
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5.5.4   Parallel HRVS 

After a displacement vector is obtained, this routine is used to generate the expanded image: 

IMAGE* PHRVS_Phrvs(IMAGE *inlmage[], MotionVectors *packed_v, 
Parms *parms); 

Where inImage is the input image sequence, packed_v is the packed displacement vector which is 
the output of routine Pmot ion (...), and parms is the parameter defined by the user. 

An example of typical user code is shown in Figure 5.2. 

5.6   Test Results 

5.6.1    Experimental Setup 

All the parallel HRVS tests use an overlap of six rows, and four worker nodes. Unless otherwise noted, 
experiements were conducted on uniprocessor Sun UltraSPARC 170 workstations. 

5.6.2    Airport Sequence 

The airport sequence is a synthetic sequence created by translating an aerial view of an airport runway. 

Technique ASNR (dB) 
Single Frame MAP Estimation, a = oo 1.43 
Single Frame MAP Estimation, a = 1 1.51 
Video Frame Extraction with Motion Estimates, M — 7, a — oo, A(',fc) — TO 

|j-fc| 3.47 

Video Frame Extraction with Motion Estimates, M = 7, a = 1, \(l'k) = JJ 10 5.48 

Video Frame Extraction with Panning, M = 7, a = oo, X(l'^ = S 6.72 

Video Frame Extraction with Panning, M = 7, a = 1, \V'k) = ^ 7.00 

Table 5.1: Comparison of Enhancement Methods on the Airport Sequence (serial version) 

Tables 5.1 and 5.2 show the results of serial and parallel HRVS, where a is the threshold parameter 
separating the quadratic and linear region defined by Huber edge penalty function. When a = oo, the 
Huber function becomes a pure quadratic, and the aprior density is a Gauss Markov random field. The 
Huber function is used to control the likelihood of edges in the image data. Us the ID of the neighboring 

56 



/ 

IMAGE *inlmage[]; /* input image sequence */ 
IMAGE *outImage; /* output image        */ 
Parms *parms; /* parameters */ 
MotionVectors *packed_v; /* motion vector 

/* Initialization */ 
PIPT_Init(argc, argv); 

if (PIPT_errflag) { 
PIPT_perror("PIPT_Init") ; 
return 1; 

} 

/* Load the input images, allocate output image */ 

/* Allocate and set parameters */ 
parms = allocParms(h, w, q, T, maxit, stop, 

window_smooth, window_count, T_ch, T_ob, 
border, spacing, p, d, 
frames, L, 
pan, interlace, field); 

/* Motion detection */ 
MotionVectors* packed_v = Pmotion(inImage, parms); 

/* Parallel HRVS */ 
outlmage = Phrvs(inImage, packed_v, parms); 

/* Clear up */ 
freelmage(inImage[]); 
freelmage(outlmage); 
freeParms(parms); 

/* Exit */ 
PIPT_Exit() ; 

Figure 5.2: PHRVS user code example 
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Technique ASNR (dB) 
Single Frame MAP Estimation, a = oo 1.41 
Single Frame MAP Estimation, a = 1 1.50 
Video Frame Extraction with Motion Estimates, M = 7, a = oo, \V'k) = .    10 

" |i-fc| 3.38 
Video Frame Extraction with Motion Estimates, M = 7, a = 1, \V>k) = lö 

\l-k\ 5.41 

Video Frame Extraction with Panning, M = 7, a = oo, A^'*) = -Ä^r 6.73 

Video Frame Extraction with Panning, M = 7, a = 1, A(W = ^f 7.04 

Table 5.2: Comparison of Enhancement Methods on the Airport Sequence (parallel version) 

frame, and A; is the ID of the central frame. A is the weight used to specify the importance of motion 
vectors (as the distance between frame I and frame A; increases, the weight of the corresponding motion 
vectors will decrease, which will generate less effect on the output image). M indicates the number of 
frames from the sequence that were used to generate the high resolution still. 

Tables 5.1 and 5.2 show that the parallel version is more accurate than the original serial implementation. 
This is because the "serial" algorithm within the parallel version was improved, it uses a different 
method, for example, some expressions are evaluated in different order, which will give better accuracy. 
The difference in accuracy does not come from the parallelism. 

The results are also shown in Figures 5.3 and 5.4. 

Note that two different random fields are applied in this example, one is Huber-Markov random field 
(HRMF) and the other is Guassian-Markov random field (GRMF), refer to [16, 17] for more detail on 
this. 

Two different motion detection methods are applied here, one is pan, which averages all the motion 
vectors into one motion vector, the other one just uses the motion vectors without taking the average of 
it. 

5.6.3   Mobile Calendar Sequence 

The mobile calendar sequence is real video sequence from the MPEG-1 test set. It shows several objects 
moving with independant motion in a single scene. 

Tables 5.3 and 5.4 show that the parallel version of HRVS does not work as well as serial version in this 
case, but the accuracy loss of SNR is less than 0.1. This is due to the fact that the parallel version uses 
an approximation to the iterative algorithm in order to simplify the parallel domain decomposition. 

The results are also shown in Figures 5.5 and 5.6. 
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Figure 5.3: Improved SNR versus number of frames (serial version) 
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Figure 5.4: Improved SNR versus number of frames in video observation model (parallel version) 
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Technique &SNR (dB) 

Single Frame MAP Estimation, a — oo 0.82 
Single Frame MAP Estimation, a = 1 1.05 
Video Frame Extraction with Motion Estimates, M - 7, a - oo, \(l'k) - ^ 1.27 

Video Frame Extraction with Motion Estimates, M = 7, a = 1, \V'k) = -^ 1.97 

Table 5.3: Comparison of Enhancement Methods on the Mobile Calendar Sequence (serial version) 

Technique &SNR (dB) 

Single Frame MAP Estimation, a = oo 1.13 
Single Frame MAP Estimation, a = 1 1.52 
Video Frame Extraction with Motion Estimates, M = 7, a = oo, A(''fc) = _    10 

-TPfc[ 1.97 

Video Frame Extraction with Motion Estimates, M = 7, a = 1, A^'fcJ = 10 2.12 

Table 5.4: Comparison of Enhancement Methods on the Mobile Calendar Sequence (parallel version) 

i f 
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Figure 5.5: Improved SNR versus number of frames in video observation model (serial version) 
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Figure 5.6: Improved SNR versus number of frames (parallel version) 

With the result of this test, we can say that the parallel version can be used to gain high performance 
without sacrificing much accuracy. 

Note all the parallel test use an overlap of six rows. 

5.6.4   Performance 

Performance Gain by VIS 

MAD (mean absolute difference) is an important routine used to do motion detection. Because of its 
standard computational pattern, it can be sped up using VIS. The speedup of the VIS version of MAD 
versus the normal MAD implementation is shown in Figure 5.7. 

The x-axis denotes the size of the blocks operated on, and the y-axis denotes the timing of each MAD 
implementation. 

There are two MAD implementations using normal instructions, and three MAD implementations using 
VIS instructions. The testing result shows that VIS version of MAD is faster than the normal version of 
MAD, for some special case (the block size if multiple of 8), a speedup of 4 can be nearly achieved. 
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MAD Performance (log-log) 

8 16 
Black Size (bytes) 

24 32 

Figure 5.7: Performance of five different MAD implementations 

To show the performance of VIS in a real PHRVS application, a three frame airport sequence (64x64) is 
used as a test case, and the middle frame is expanded by a factor of 4. The wall clock time for PHRVS 
without VIS is 1426.5 seconds, while the wall clock time for PHRVS with VIS is 383.0 seconds. The 
speedup is 3.72. It is close to the ideal linear speedup of 4. 

Parallel Performance Gains 

Since the main goal of parallel HRVS is to get high performance, the speed up of parallel implementation 
is also tested. The parameters used in testing are shown in Table 5.5. The VIS enhancements were not 
used in this test. 

The overlap is six rows. When PHRVS is applied to the airport video sequence(64x64), we get the 
performance result shown in Table 5.6. The speedup is not the ideal 4, because the load on worker 
nodes is not even due to the use of overlap (The middle slices are larger than the edge slices). 

The computation time ratio (motion detection vs. MAP) is about 9:1, then -^ of the load is computation 
of motion vectors, and ^ of the load is on MAP. Suppose we use overlap of 6 rows on 64x64 image 
expansion, thus the maximum speedup of MAP computation is 16^g+6 x 4 = 2.28 (to compute each 
slice, 2 overlaps of 6 pixels are needed, thus 28 rows of input pixels are used to compute 16 rows of 
output pixels); the maximum speedup of motion vectors computation is g||g x 4 = 3.66 (), so the total 
speedup can be expressed as  0.8 j 0,i   = 3.44. This approximately matches the performance result 

Q Aft   i   o oa 3.66 ^2.28 
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h = 64 
w = 64 

q = 4 
T = 1.0 

maxit = 50 
stop = le-4 

window_smooth = 10 
window_count = 5 

T_ch = 5.0 
T_ob = 10.0 

border = 0 
spacing = 1 

P = 5 
d = 9 

frames = 0 
L = 10.0 

pan = 0 

Table 5.5: Parameters setup 

Number of frames Serial 4 processors Speedup 

1 42.106 16.966 2.48 

3 381.711 130.889 2.92 

5 648.130 209.158 3.10 

7 908.794 294.118 3.09 

Table 5.6: Performance results 
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in Table 5.6. Also other overhead such as packing and unpacking motion vectors, redundant MAP 
computation on the overlap pixels while doing motion detection, and communication overhead has to 
be considered when comparing the ideal and actual speedups. 

The unbalanced load is shown in Figure 5.8. 

Figure 5.8: Trace for 3-frame hrmf/motion vector (Airport Sequence) 

Note the middle two processors get more load than the top and bottom processors. This is the result of 
giving overlaps of different sizes to the worker nodes. 

The same test was done on the mobile calendar sequence (144x180); the results are shown in Table 5.7. 

Frames Serial 2 processors Speedup 4 processors Speedup 8 processors Speedup 
1 240.044 132.835 1.81 79.842 3.01 49.688 4.83 
3 2348.030 1364.863 1.72 658.584 3.57 414.553 5.66 
5 4211.640 2274.864 1.86 1195.730 3.52 674.809 6.24 
7 6006.364 3401.058 1.77 1660.635 3.62 1027.015 5.85 

Table 5.7: Performance results (Mobile Calendar Sequence) 

Using the same computation time ration and overlap as the previous example. Suppose we use an 
overlap of six rows on a 144x180 image expansion, thus the maximum speedup of MAP computation 
is 36_?g+6 x 4 = 3.00; the maximum speedup of motion vectors computation is 1%j£6 x 4 = 3.84, so 
the total speedup can be expressed as speedup = 0.a ) o.i = 3.74. It closely matches the testing result 

that we obtained previously (3.62). 
3.84 T 3.00 

The unbalanced load is also shown Figures 5.9 and 5.10. 

Note the white vertical line denotes the data transferring between the nodes. 

Comparing Figure 5.8 with Figure 5.9, the latter is more well-balanced than the former. This result is 
expected by the previous analysis, since for a larger image, the ratio between slice size and overlapped 
area size is smaller. The ideal MAP parallel speedup will be higher, thus the better result is shown with 
the larger image. 

For Figure 5.10, although the ratio of overlap to window size is the same as the case shown in Fig- 
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Figure 5.9: Trace for 3-frame hrmf/motion vector (Mobile Calendar Sequence) 

Figure 5.10: Trace for 3-frame Mobile Calendar sequence PHRVS processing with 8 workers. 

ure 5.9, more worker nodes are used, and the size of distributed slice image is smaller than the case in 
in Figure 5.9. Therefore, more redundant computation is performed on each worker node. 

5.7   Conclusion 

HRVS is a new technology to do image enhancement based on both spatial and temporal information, 
which gives better visual and quantitative improvements over traditional image enhancement technol- 
ogy. HRVS is a CPU bound job which can benefit a lot by applying parallelization. This is the main 
motivation of PHRVS. 

Both instruction level parallelism and distributed memory parallelism are used in PHRVS. 

VIS is the tool used in PHRVS to exploit instruction level parallelism. In the motion detection stage of 
HRVS, 4 pairs of pixels can be compared in parallel using VIS. The experiment on the airport sequence 
shows a speedup of 3.72 when using VTS. 

PDFT is the tool used in PHRVS to exploit distributed memory parallelism. Video sequences are sliced 
into several smaller sequences. These sequences are then distributed by PIPT to several working nodes, 
on which motion detection and MAP computation are done in parallel (each separately). 
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By applying both instruction level parallelism and distributed memory parallelism, the experiment on 3 
airport frames shows that PHRVS gives a speedup of 10.97 over the original serial HRVS. 

The work shows the potential of doing HRVS in parallel. 
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Chapter 6 

Parallel Visualization 

6.1    Overview 

PVIZ (Parallel Visualization Toolkit) is an auxiliary library for the PIPT. The main goal of PVIZ is 
to offer PIPT users a convenient and efficient way to visualize image processing results, and to per- 
form image processing operations interactively. PVIZ can also be used to build an interface for PIPT 
applications. 

PVIZ is built using Sun's XIL foundation image processing library and the PIPT. It acts as an interpreter 
between XIL and PIPT, so the user can take advantage of the features in both the PIPT and XIL. 

6.2    Supporting Libraries 

The PVIZ uses the XIL foundation library to do the basic image processing, while offering the user 
a PEPT-like interface. Thus, the use of XIL is totally hidden from the PVIZ user interface. The user 
operates on PIPT IMAGE and PVIZ_Display objects, and is not required to have any knowledge of 
XIL foundation library. 

6.2.1    Parallel Image Processing Toolkit 

The Parallel Image Processing Toolkit (PIPT) [15, 20] was developed by the Laboratory for Scientific 
Computing at the University of Notre Dame. It is a scalable, extensible, and portable collection of image 
processing routines, which use a message passing model based on the Message Passing Interface (MPI) 
standard. It is specifically designed to support parallel execution on heterogeneous workstation clusters. 
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6.2.2   XIL Foundation Library 

XIL is a C language foundation library for image processing and compression. It was introduced in 
1992 as a fundamental component of the SunSoft, Inc. Solaris operating system. 

As an imaging foundation library, XIL has many good features. The features that are of most interest to 
us are: 

• XIL is MT-hot, meaning that it is both multi-threaded aware and maximizes concurrent processing 
through the use of threads. Thus visualization will derive a speedup in multiprocessor systems. 

• XIL supports deferred execution mode of operation in which execution of a sequence of functions 
is deferred until certain processing conditions are met. Thus, it accelerates many image processing 
applications. 

• XIL can be used to operate on the frame buffer directly for the purpose of visualization. This 
saves the extra memory copy and delivers high performance. 

For more information about XEL, see [22,23]. 

6.3    Design 

6.3.1    Image Structure Conversion 

The PIPT and XLL use different structures to represent an image. For example, in the PIPT, the image 
structure is defined in Figure 6.1. The XEL image is an opaque structure. 

The XEL image structure has more attributes than the PIPT image, but does share attributes such as 
height, width, plane, and pixels. In addition to these attributes, an XEL image also contains a storage 
scheme, a color space, and an origin. 

Since the main goal of PVIZ is to use XEL while hiding the internal data representations of XEL, these 
two image representations have to be converted back and forth. This is done inside the PVEZ routines 
using (PVIZ_pipt_to_xil () and PVIZ_xil_to_pipt ()). The PVIZ user should not need to call 
these functions. 

Using the conversion routines, each image processing routine in XEL can be wrapped to offer a PEPT-like 
interface. 
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typedef struct { 
int 
uint32 
uint32 
uint32 
PIXEL 

fmt; 
h; 
w; 
p; 
***data; 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

3 for RGB, 1 for Grayscale 

PALETTE 
} IMAGE; 

*palette; 

height 
width 
# of planes, 
raster 
data[0][0] points to the beginning of a 
contiguous raster of h*w pixels; 
data[k][0] points to the beginning of 
the k-th plane (or color); 

/* data[k][i] points to the first pixel in 
/* the i-th row of the k-th plane 
/* Only used for palettized color images 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Figure 6.1: The PIPT IMAGE structure. 

6.3.2   PVIZ Display 

In PVIZ, a display class is supported to display images. Its definition is shown in Figure 6.2. 

typedef struct { 
Window xwindow; 
Xillmage display; 
Xillmage buffer; /* double buffer */ 
PVIZ_Bool resizable; 
PVIZ_Bool redrawable; 
PVIZ_Display; } 

Figure 6.2: The PVIZ PVIZJDisplay structure. 

There are several operations for manipulating and accessing a display object. These operations include 
create () .destroy (), setDrawable () .setResizable (),and resize (). OneXwindow 
is associated to any created display object. The X window can be retrieved from the display object by 
calling PVIZ_Display.getWindow(). This X window handle can be used in the user interface 

program. 

When a display object is set to be resizable, the size of window will be changed responding to the 
requirement of different image processing operations. Otherwise, the size of the window will remain 
the same and the output image may be cropped. 
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When a display object is set to be redrawable, a double buffer is used to store the intermediate result upon 
a request or an exposure event, allowing the display to be refreshed automatically. This functionality 
necessitates some extra overhead from buffering; if it is not necessary, the display should not be set to 
be redrawable. 

6.3.3   PVIZ Routine Interface 

Any PVIZ image processing routine can use either a PIPT image object or a PVIZ display object as 
input and output; there are four interfaces for each PVIZ image processing routine. The last two letters 
of the function name indicate the type of the input and output arguments. The letter I is used indicate 
PIPT IMAGE arguments; D is used to indicate PVIZJDisplay arguments. For example, Table 6.1 
shows the four interfaces to PVIZ-Rotate (). 

Function name Input type Output type 
PVIZJRotatell() 
PVIZJRotatelD() 
PVIZJRotateDI() 
PVIZJRotateDDO 

IMAGE 
IMAGE 
PVIZJDisplay 
PVIZJDisplay 

IMAGE 
PVIZJDisplay 
IMAGE 
PVIZJDisplay 

Table 6.1: The four interfaces to the PVIZJRotate () function. 

Thus, the user can choose to apply an image processing operation in main memory or in the frame 
buffer. This kind of flexibility is one of the major design goals of PVIZ, and chosen to provide a close 
mapping to the capabilities offered by XIL. 

6.3.4   PVIZ Computation Kernels 

New XIL routines can easily be wrapped into PVIZ. To achieve this goal, a kernel registration scheme 
is used. Each wrapped XIL routine only needs to supply three registration structures that describe 
what operation it performs and what parameters it needs. After a kernel is registered, all the detailed 
conversion operations are hidden from the user. 

6.4   Demo Program 

A simple demo program was written to show how to use PVIZ to write a visualization program. In this 
demo program, PVIZ is initialized using PVIZ_Init (). Two PVIZ displays are then created; the input 
TIFF formatted image is shown on the main display while the second display is left blank. The user 
can apply several different image processing operations such as rotation, projection, and edge detection 

70 



in either the frame buffer or main memory. Help is available by typing ' ?' in the main window. Users 
can choose one display as input and the other display as output, or they can choose one display as input 
and main memory as the output to get a PIPT IMAGE. The PIPT IMAGE can be also saved as a file or 
processed using PIPT routines. 

The demo interface was written using the X library Xlib. User actions are obtained by catching native 
X events. Since XIL is not tied to any particular X library, users can also use the Motif libraries, for 
example, to build visualization program interfaces. 

6.5    Library Routines 

A complete list of the image visualization routines is shown in Table 6.2. Each routine listed has all four 
interfaces. Refer to [23] for more detailed description of these routines. 

Visualization routine 
PVIZ_Combine 
PVIZ.Convolve 
PVI Z_Copy Image 
PVIZ_Dilate 
PVI Z_Di vide 
PVIZ_Divide_into_const 
PVIZ_Divide_with_const 
PVIZ_Edge_detection 
PVIZJErode 
PVIZ-Rotate 
PVIZ_Rescale 
PVI Z_Trans late 
PVIZ_Transpose 

Description 
Combine corresponding band of two images into a target image 
Apply convolution operation to an image 
Copy image 
Apply dilation operation to an image 
Apply division operation to two images 
Divide each pixel of image by a constant 
Divide each pixel of image with a constant 
Detect the edge of image 
Apply erosion operation to an image 
Rotate image 
Rescale each pixel value of image by a certain rate 
Move the origin of image 
Transpose an image  

Table 6.2: PVIZ image processing library routines. 
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Chapter 7 

Photoshop Interface 

7.1    Introduction 

In the field of Image Processing, not all users are familiar with programming. In order to provide users 
with a fast and convenient way to process images, we developed the PIPT [15, 20] plug-in. Plug-ins 
are software programs that extend the capabilities of existing software. The PIPT plug-in is based on 
the filter Plug-In of Adobe Photoshop. The PIPT plug-in allows PIPT functionality to become part of 
Photoshop. It hides the parallelism and programming from the user and provides an effective, stable user 
visualization environment. In this documentation, we describe the PIPT plug-in, and how this allows 
the PIPT to be inserted into Adobe Photoshop. 

7.2    Requirements 

To meet the user's requirements, the PIPT plug-in should meet the following design specifications: 

1. Fast: Users often require image processing tools to work on very large images, which makes 
the speed of the image processing critical. To make matters worse, processing time increases 
polynomially (O(nm) forn x m image) as the size of the image increases. The PIPT is a parallel 
image processing toolkit developed by LSC, University of Notre Dame. It uses the Message 
Passing Interface (MPI) [24] to parallelize the image processing based on the workstation clusters 
to achieve a high speedup. Therefore, the PIPT plug-in can meet the speed requirement through 
the use of parallelization in the PIPT. 

2. Popular: Users have many choices when it comes to software. How can we make the PIPT plug- 
in a popular choice? Adobe Photoshop is a very popular image processing tool and widely used 
at the present, so inserting the PIPT into Photoshop can give the PIPT a wide chance to be used. 
We selected Photoshop as the user interface for the PIPT. 
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3. Intuitive GUI: The PIPT plug-in should have a user-friendly interface. We use the X/Motif 
libraries to create the graphical user interface for the PIPT plug-in. The user interface is designed 
to provide a convenient way for users to select PIPT routines, input the parameters and process 
the image. 

7.3   Design 

Before introducing the design of the PIPT plug-in, we will talk about how the Photoshop plug-in and 
PIPT work. 

7.3.1    How The Adobe Photoshop Plug-in Works 

Plug-in modules provided by Photoshop can allow either the Adobe Systems or third party developers 
to extend Photoshop without actually modifying the base application. Adobe Photoshop version 3.0 for 
UNIX supports five kinds of plug-in modules, Acquisition modules, Export modules, Filter modules, 
File format modules and Extension modules [2]. 

The Filter module lets you apply special effects by modifying a selected area of an existing image. This 
is similar in function to the PIPT routines. We use the filter module to realize the PIPT plug-in. 

Photoshop for the UNIX platform treats plug-ins as dynamically loaded shared objects. In order to 
create a shared object when compiling the plug-in program, the correct flag must be present in the 
makefile, such as in the Sun environment, -G -Bsymbolic is used in building the plug-in executable 
files. Each filter plug-in in Photoshop is required to have an executable file and a resource fork, with 
an associated file that begins with a percent sign (%). The resource fork is used to organize its menus 
by Photoshop. It is created using the MakePlugln utility [2]. The executable file is the executable code 
including the GUI and filter process. 

The GUI of a Photoshop Plug-in should be written to conform to Motif style guidelines. To simplify 
plug-in development, a set of utilities are included in the Photoshop SDK (Software Development Kit). 
The files PlUtilities. c and PlUtilities .h contain various routines and macros to make it 
easier to use the host callback functions. 

The program structure of filter plug-ins should obey the following rules: 

• The plug-in source file should include the corresponding header file PIFil ter. h. 

• The plug-in must provide a function named main_entry (), it is the callback function exported 
by Photoshop. This is explained later. 
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• In order to display the plug-in on the screen, we obtain the X display handle through the PSGet- 
Display () routine, or obtain a top level shell using PSGetTopShell (). Then we are free to 
create our own user interface in X/Motif. Photoshop also provides an event dispatching routine, 
PSDispatchEvent (XEvent *) which does Photoshop specific things as well as normal X 
event processing. It should be (and is) used instead of XtDispatchEvent (). 

When the user takes an action that causes a plug-in module to be called, Photoshop opens the resource 
fork of the file that the plug-in module resides in, loads the resource in memory, locks it and calls the 
routine starting at the first byte of the resource. This must be the main_entry () callback function. It 
has the following calling convention [1]: 

void main_entry (short selector, Ptr stuff, long *data, short *result); 

The parameters are to be interpreted as follows: 

• selector 

This is an integer operation selector code. There are a total of five kinds of selectors defined by 
filter plug-in. When the user invokes the plug-in by selecting its name from the Fi 11 er submenu, 
Photoshop loads the plug-in's resource into memory and calls it with the following sequence of 
selector values. 

- filterSelectorParameters 

If the plug-in filter has any parameters that the user can set, it should prompt the user and 
save the parameters in a relocatable memory block whose handle is stored in the parameters 
field. Photoshop initializes the parameters field to NULL when starting up. 

- filterSelectorPrepare 

If the plug-in filter needs to allocate large buffers (32K), we set the buff erSpace field in 
stuff to the number of bytes it needs. Photoshop will then try to free up that amount of 
memory before calling the plug-in's filterSelectorStart routine. 

- filterSelectorStart 

In this call, the fields inRect and outRect are set to request the first areas of the pro- 
cessed image to work on. 

- filterSelectorContinue 
The routine is repeatedly called as long as at least one of the inRect, outRect, or 
maskRect fields is non-empty. 

It should process the data pointed by inData and outData and then update inRec t and 
outRect to request the next area of the image to process. 
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- filterSelectorFinish 
This call allows the plug-in to clean up after a filtering operation. It is made if and only 
if the filterSelectorStart routine returns without error. If Photoshop detects a 
command-period between calls to the f ilterSelectorContinue routine, it will call 
the f ilterSelectorFinishroutine. 

• stuff 
This is a pointer to the parameter block. The exact nature of the parameter block depends on the 
type of plug-in. In filter plug-in, it uses the FilterRecord data structure and passes the rele- 
vant information of the processed image into main_entry (). The FilterRecord definition 
is in the PlFilter. h header of the Adobe Plug-In SDK [1]. 

• data 
This is a pointer to a long integer (32 bits) which Photoshop will maintain for the plug-in across 
invocations. It will be zero the first time the plug-in is called. In the PIPT plug-in, we use this 
field to store a pointer to the plug-in's "global" data. In the PIPT, we designed the specific global 
data structure. 

• result 

This is a pointer to the result code to be returned by the plug-in. It has a different meaning for 
different values 

= 0: no error has occured. 

> 0: The plug-in has already displayed any appropriate error message. 

< 0: The execution of the plug-in should stop, but the host should display its standard error dialog 
describing the error. 

The typical structure of the callback main_entry () function is shown in Figure 7.1. All calls to the 
plug-in module come through this routine. It must be placed first in the resource. To achieve this, the 
development system requires that this be the first routine in the source code. 

7.3.2   Design of the PIPT Photoshop Plug-in 

In this section, we will talk about the design of the PIPT plug-in: the main program structure, the 
graphical user interface and the data structure. The PIPT plug-in is written in the C programming 
language. 
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extern void 
main_entry (short selector, FilterRecord *stuff, 

long *data, short *result) 

{ 
GHdl globals;       /* defined global data */ 

if (!*data) {       /* initialize the global data when the */ 
/* plug-in is first called */ 

*data = (long) NewHandle (sizeof (Globals)); 
if (!*data) { 

♦result = memFullErr; 
return; 

} 
InitGlobals ((GHdl) *data); 

} 

globals = (GHdl) *data; 
gStuff = stuff; 
gResult = noErr; 

switch (selector) {     /* do the operation for each selector */ 
case filterSelectorAbout:   /* display the about dialog box */ 

DoAbout (globals); 
break; 

case filterSelectorParameters: 
/* input the parameters needed by plug-in */ 

DoParameters (globals); 
break; 

case filterSelectorPrepare:    /* allocate the large buffer */ 
DoPrepare (globals); 
break; 

case filterSelectorStart:      /* set the first processed */ 
DoInitialRect(globals);      /* rectangle image */ 
break; 

case filterSelectorContinue:   /* process the image */ 
DoContinue (globals); 
break; 

case filterSelectorFinish:     /* free the allocated buffer */ 
DoFinish (globals); 
break; 

default: 
gResult = filterBadParameters; 
break; 

} 

♦result = gResult;    /* return result */ 

Figure 7.1: Example of main_entry () function 
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Program Structure - The Interface With Photoshop 

In Photoshop, the PEPT plug-in is under the Filter menu. A submenu called "PIPT" is inserted in 
the Filter menu. When the PIPT plug-in is selected, the PIPT plug-in dialog box (see Figure 7.2) 
appears. A user can choose the PEPT routine to process an image. The PIPT routines are split into 
five categories - Enhancement, Feature, Filter, Imagehandling, Random. In the PIPT dialog box, a user 
can also decide how many processors to use in the parallel processing and whether to turn on the timer 
which reports the processing time. If the user turns on the timer, after the image processing finishes, the 
PIPT plug-in will display the image processing time. 
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Figure 7.2: PIPT dialog box 

Since it is the best choice to insert the PIPT as one submenu into Photoshop Filter menu, only one 
main module PIPT. c which consists of the plug-in callback function main_entry () is designed 
according to the rules of Photoshop filter plug-in. In this module, the user selection is dispatched and 
the parameters input by the user are passed into the PIPT routine. 

In Photoshop filter plug-ins, the image is typically split into many slices and passed one at a time to 
the function selector f ilterSelectorContinue. This is a sequential process until all the slices 
are processed. In order to make this parallel in the PIPT, we don't split the image. From the point of 
Photoshop, the whole image is partitioned into only one slice. To achieve this, two steps needs to be 
done. One is that we set the initial processed slice as the whole image in the function of the selector 
f ilterSelectorStart, the other is that we should set buff erSpace to tell Photoshop the size 
of the needed buffer in the function of the selector f ilterSelectorPrepare. Because the image 
is not split, a large buffer is required to store the whole image. 
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In the program structure shown above, The function PIPTJJI () is designed for the PIPT plug-in main 
dialog box. It will be introduced in Section 7.3.2. 

DispatchJJI () brings up the relevant window for a particular PIPT routine according to the user se- 
lection. Figure 7.3 shows the parameter input window for the I PAddUni f orm () routine. Di spatch- 
_UI () has the following prototype: 

int Dispatch_UI(GHdl globals); 

The argument globals has the data structure of GHdl defined in PIPT. h. It stores the global infor- 
mation related to the image processing such as the selected PIPT routine, the number of workers etc. 
We will introduce the GHdl data structure in Section 7.3.2. Although the Photoshop plug-in function 
can be regarded as a callback function, and part of the Photoshop process, Photoshop doesn't keep the 
global variables for when the callback function main-entry () is reentered. The only way provided 
by Photoshop to keep global variables is to use the data argument in main_entry (). We can use it 
to allocate a pointer to a data structure which includes the necessary information. 

Process_Image () calls the relevant PIPT routine depending on the selection of the user, it has the 
following prototype: 

IMAGE* Process_Image(IMAGE* in, GHdl globals, 
int *param_error, int *result_error) ,- 

The arguments have the following meanings: 

• in The input image to be processed. 

• globals Stores the global information which includes the user selections, which PIPT routine 
is selected, the number of the workers, whether or not use timer etc. 

• param_error The returned value. In Process-Image (), the input parameters for the image 
processing are analyzed. Only valid input parameters can be passed to PIPT routines. Otherwise, 
this argument would return nonzero. 

• result .error If it is nonzero, then there is error during the image processing. It is a returned 
value. 

• When the image is processed successfully, the output image is returned in the form of a pointer to 
an IMAGE data structure as defined by the PIPT. A NULL pointer is returned otherwise. 
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Because the feature routines in the PEPT have their own characteristics, we designed a specific function 
Do_Features () for them. The details of how we deal with the features is introduced in Section 7.3.2. 
The following is its prototype: 

FEATURE* Do_Features(IMAGE* in, GHdl globals, int *param_error); 

The arguments have the following meanings: 

• in The input image to be processed. 

• globals The same as in function Process-Image (). 

• param_error The same meaning as in Process-Image (). 

• When the image is processed successfully, the output FEATURE data structure as defined by the 
PIPT is returned, otherwise it is NULL. 

The Graphical User Interface 

The GUI is written using the X/Motif libraries. Some of the resources used are written in UIL (User 
Interface Language). According to the way of parameter input of each PIPT routine, the GUI is classified 
into four kinds, the main PIPT plug-in GUI shown in Figure 7.2, the input GUI, the output GUI and the 
GUI for specific PIPT routines. 

The main PIPT plug-in GUI is a dialog box realized by the function PIPT.UI () which has the follow- 
ing prototype: 

void PIPT_UI(int* type, int* filter, int* procs_num, int* timer); 

The arguments have the following usage, 

• type The type of the PIPT routine that the user selects. It is one of the five values defined in the 
header file PIPT. h: FILTERS, FEATURES, MAGEHANDLING, ENHANCE, RANDOM. 

• filter The PIPT routine selected by user such as IPAVERAGE, IPfflSTOGRAMEQUAL, etc. 

• procs-num The number of workers to process the image. When the PIPT is initialized, it passes 
the number of processors available to do work into the function and returns the number of workers 
to process the image. 
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• timer Whether to turn on the timer which calculates the image processing time. If it is 1, turn 
the timer on, if 0, off. 

The second and third GUI window used in the PIPT plug-in are the PIPT plug-in Parameter Input and 
Result Output dialog. Because almost all the PIPT routines need to input relevant parameters a standard 
dialog box pops up when user chooses one of the PIPT routines from the main PIPT plug-in dialog 
box. In this dialog the user can choose the parameters, then click the "OK" button to process the image. 
The parameter input and result output of almost all the PIPT routines are very similar, so two functions 
are designed to realize these input and output dialogs. One is called InputJJI (), it creates the input 
dialog boxes of the PIPT routines. Figure 7.3 shows an example used by IPAddUnif orm(). There 
are two parameters needed by this routine, one is Range the other is Seed. 
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Figure 7.3: Input dialog box 

Because the output of some PEPT routines is just a few numbers, such as in IPImageMean (), IPImage- 
StdDev () etc, there is another Output_UI () function to create an appropriate dialog. It creates the 
output dialog box to display the resulting data. Figure 7.4 shows an example of such dialog box. 
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Figure 7.4: Output dialog box 
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These two functions have the following prototypes: 

int Input_UI (char *DialogClass, char *DialogTitle, 
char *DialogLabel, CallbackData *Data) 

void Output_UI (char *DialogClass, char *DialogTitle, 
char *DialogLabel, CallbackData *Data) 

The arguments used in these two functions have the following meanings: 

• DialogClass The name of the dialog class in X/Motif programming. 

• DialogTitle The title of the dialog box. 

• DialogLabel The label shown in the upper area of the dialog. For example in Figure 7.3, the 
string 'AddUniform Parameter Entry Window' is the label. 

• Data It has the data structure CallbackData which is introduced in Section 7.3.2. Depend- 
ing on Data, the function can arrange to create the correspondent dialog for the PIPT routine . 
Input.UI () is filled with the parameters needed by the PIPT routine. In Output.UI () it is 
filled with the output result data. The CallbackData structure is introduced Section 7.3.2. 

• Return value If user clicks "OK" button, it returns 1, and the image is processed. If user 
clicks "Cancel" button, it returns 0, and the image is not processed. 

The last kind of PIPT GUI window is for some routines in features type, such as iPCoOccurClus ter (), 
IPCoOccurContrast () etc. The function CoOccur_lnput_UI () is designed to create the dia- 
log box shown in Figure 7.5. It is defined as the following: 

int CoOccur_Input_UI(char *dialogtitle,   char *dialoglabel, 
CallbackData *Data); 

The arguments used in this function have the same meanings as Input_Ul (). 

Besides the above functions, another two functions ImageMoments-UI () and ImageHistogramJJI () 
are designed for IPImageMoments () and IPImageHistogramO routines respectively.  They 
have the following prototypes: 
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Figure 7.5: IPCoOccur dialog box 

void ImageMoments_UI(unsigned int  in_moment,   unsigned int  in_plane, 
double  **data); 

void ImageHistogram_UI(unsigned int  in_plane,   unsigned long **data); 

The arguments in the two functions are correspondent to IPImageMoments () and IPImageHistogram( ] 

Except PIPT-UI () is in the file PIPT_Private_UI. c, all the other functions are in the file PIPT_Public- 
-UI. c. Each file has a related UIL resource file. They are PIPT_Pr ivate_UI. uil and PIPTLPublic - 
_UI .uil respectively. 

The Interface With the PIPT 

For programs that use MPI, we must use mpirun [24] to start the program instead of the normal 
method of starting the application program. Because Photoshop is not designed to work with MPI, we 
can not run Photoshop using mpirun in order to call the PIPT plug-in. To avoid using mpirun, we 
add the function PIPT_Spawn_Ini t () which does the same things as PIPT_Init () in the PIPT. In 
PIPT_Spawn_Init (), MPIL_Spawn () [19] is called to spawn the child processes PIPT_Child in 
the universal machines. ' They set up the environment needed by the PIPT. 

PIPT_Spawn_Init () is designed as the following: 

'Only the LAM (Local Area Multicomputer) [6] implementation of MPI has the function MPlL_Spawn (), it is not a 
standard function. This is the reason why we use the LAM version of MPI in the PIPT plug-in. 

82 



void PIPT_Spawn_Init(int Userarge, char *Userargv[], 
char *app, int *proc_num) ; 

The arguments have the following usages: 

• Userargc, Userargv They are the same as PIPT_Init (). For the LAM version MPI, 
arge and argv are not really needed by MPLIni t (), and the callback function main-entry () 
doesn't have arge and argv, so we create them in the PIPT plug-in artificially. 

• app This is a character string used in calling MPIL_Spawn (). It decides how to spawn the child 
processes PIPT_Child. The format of this string can be seen in mpi man page. 

• procs_num After PlPT_Spawn_lnit () is called, it returns the universal size of processors. 

The call to MPlLJSpawn () in PIPT_Spawn_Init () is shown in figure 7.6. 

MPI_Comm intercom, parent, comm_world; 
if (app != NULL) { 
MPIL_Spawn(MPI_COMM_WORLD, app, 0, &intercom); 
MPI_Intercomm_merge(intercom, 0, &comm_world); 

} 
else { 

MPIL_Comm_parent(fcparent); 
MPI_Intercomm_merge(parent,   0,   &comm_world); 

} 

Figure 7.6: Call to MPIL_SPAWN 

If app is not NULL, a child processes is spawned according to app. This is the job of the manager. 
If app is NULL, the process must be a child. The parent processes is obtained and the communicator 
comm_world is created. 

The child process is a very simple program, it has three lines and only calls PlPT_Spawn.Init () and 
PIPT_Exi t (). Figure 7.7 shows the source code of child. c: 

As stated previously, the LAM implementation of MPI is required because Photoshop cannot be used 
in conjunction with mpirun. The LAM implementation of MPI requires some setup for it to function. 
Before the PPT plug-in is selected from the Photoshop Filter menu, the LAM parallel machine must 
be started using lamboot. After the user is finished, wipe must be run to shut down LAM. Please 
refer to the LAM [6] documentation for information about installing LAM and using lamboot, wipe, 

etc. 
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#include <pipt.h> 

int main(int arge, char **argv) 
{ 

int nprocs; 
PIPT_Spawn_Init(arge, argv, NULL, &nprocs); 
PIPT_Exit(); 

} 

Figure 7.7: Child Program 

Feature Handling 

The PIPT defines its own feature data structure. It provides a function called IPFeatureToImage () 
to convert features to images. Each feature can be converted into the same number of images as the 
number of planes. Each image has only one plane (grayscale image). Such as if a image is RGB which 
has 3 planes, its output feature will be converted into 3 grayscale images. But the Photoshop filter plug- 
in doesn't provide the interface to display several images at the same time, so we have to combine these 
converted images into one image in order to display the feature result visually. The way of combining 
the images into one image is shown in Figure 7.8. 
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Figure 7.8: Image combination 

Data Structure 

Several data structures are designed for the PIPT plug-in. They are defined in the header file PIPT. h. 
For the GUI of the PIPT plug-in, a CallbackData data structure is defined (Figure 7.9). It is used in 
the functions input.UI (), Output.UI () etc. 
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typedef struct _CallbackData { 
int itemnum; 
Item item[MAX_NUM_WIDGET]; 

} CallbackData; 

typedef struct _Item { 
char *labelname; 
char *classname; 
int  type; 

int  value_int; 
float value_float; 
char* value_string; 

} Item; 

Figure 7.9: Callback Data Structure 

The element itemnum is the number of parameters. The item is an array which has the struct 
type, it holds the information used in the GUI for each parameter. The elements in this structure have 
the following usage: 

• labelname The name of the input parameter shown in the dialog box. 

• classname The class name of the parameter resource. 

• type Indicate which type the item is, there are three types INT, FLOAT, STRING. INT repre- 
sents integer, FLOAT represents double, STRING represents character string. 

• value_int When the type is INT, it is the integer value of this item. 

• value_f loat When the type is FLOAT, it is the double value of this item. 

• value_string When the type is STRING, it is the character string value of this item. 

Since Photoshop interferes with the use of global variables, two data structures TParameters and 
Globals are created in order to keep the parameters related to the GUI and other information. The 
definition of these data structures is shown in Figure 7.10. 

In TParameters, there is just one element which is CallbackData type. In the function of the 
selector f ilterSelectorParameters, the parameters in the FilterRecord is initialized 
and allocated a new handle to store the CallbackData. 

Some necessary information is included in Globals except the FilterRecord, they are the follow- 
ings: 
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typedef struct _TParameters { 
CallbackData Data; 

} TParameters, *PParameters, **HParameters; 

typedef struct Globals 
{ 
short result; 
short type; 
short routine; 
short workers; 
short timer; 
short pipt_init; 

FilterRecord *stuff; 
} Globals, *GPtr, **GHdl; 

Figure 7.10: Globals Data Structure 

• result Stores the result of user selection and whether there is error in image processing. 

• type The type of the PIPT selected routine; it is one of the five values, FILTERS, ENHANCE, 
IMAGEHANDLING, RANDOM, FEATURES. 

• routine The selected routine such as IPAverage, IPCrossMedian etc ... 

• workers The number of workers to process the image. 

• pipt_ini t The flag of initializing the PIPT, it is not used in the current version of the PIPT 
plug-in. 

• stuff The information related to filter plug-in, FilterRecord is defined by Photoshop plug- 
in, we have introduced it in Section 7.3.1. 

When the plug-in is selected for the first time in Photoshop, we use the argument data passed by the 
callback function main_entry () to allocate a handle to keep the globals. 

File Format 

Besides all the image format files supported by Photoshop, there are two kinds of files used in the 
PIPT plug-in. One is the feature file used in the feature processing, the other is the data input file for 
IPFeatureSepConvolution. These two files are all text format files. The format of the feature 
file is: 
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File Header: »»iPToolkitFeatureFilelDVersionl''   (string type) 
Feature parameters:     dimension,  height,  width  (long integer type) 
Feature data: data,   data,   data,   .   .   .    (float type) 

The format of the input data file for iPFeatureSepConvolution is comma separated floating 
point numbers. 

Using dif f provided by the UNIX system, we compare the output image files generated by the PIPT 
plug-in and the PIPT respectively for the same PIPT routines and the same input parameters, dif f 
reports that the two files are the same. This confirms that the PIPT plug-in produces correct output. 
From the view of parallelism, the PIPT plug-in achieves a nearly linear speedup which is similar to the 
PIPT. 

Because the Photoshop plug-in doesn't permit us to change the size and the number of planes of the 
image, there are six PIPT routines which are not included in the plug-in. Five of them are of the 
Imagehandling type, one of them is of the Features type. Almost all of them try to change the size or the 
number of the planes of the image. The following shows the reasons why they are not part of the PIPT 
plug-in: 

• iPCopylmage (): Photoshop can do it well. 

• iPlmageFlipHorizontal (): the size of the image is changed. 

• iPlmageScale (): the size of the image is changed. 

• iPImageToGray (): the number of planes is changed. 

• iPlmageTolmage (): the number of planes can be changed 

• I PC army Edge (): the number of the feature planes is always 2. 

IPCannyEdge is Features type, all the others are Imagehandling type. 

Hopefully, these routines can be added in the next version of the PIPT plug-in. 

7.4   Conclusions 

The PIPT plug-in inserts the PIPT into Adobe Photoshop successfully and it realizes parallel image 
processing in a widely used image processing software application. There are a few issues that went 
unaddressed in this initial version of the PIPT plug-in. These will be dealt with in two improvements 
for the next version of the PIPT plug-in. These future improvements are beyond this effort. 
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7.4.1    Change of Image Data Format 

Right now, the PIPT and Photoshop use different data formats to store the image data. When image data 
is passed between the PIPT and Photoshop, we need to change the data format. This is done sequentially 
and can represent a significant overhead. Therefore we will change the data format in the next version 
of the PIPT plug-in and eliminate the steps used to translate the format. 

7.4.2   Improvement in PIPT Initialization 

With the PIPT plug-in, the PIPT has to be initialized each time the PIPT plug-in is selected. This is 
because global variables can not be used from a Photoshop plug-in. It will take some time to set up the 
environment needed by the PIPT. So in the next version the PIPT plug-in, a way will be figured out to 
initialize PIPT only once when the user invokes the PIPT plug-in the first time. 

7.4.3   Probable Bug in Photoshop 

When the input image is a grayscale image, and the width of the selected area is not the same as the 
width of the image, the image processing results are incorrect. The reason is that Photoshop does not 
pass the image data to the plug-in program properly. Instead of passing just the region we are interested 
in, for each row in the region, the entire row is passed in, not just the columns that are part of the region. 
Since more data than is desired is passed, and the computation uses the extra data, and operates on this 
new super region, the final result is incorrct by a small factor, and more than the desired region was 
processed on. Moreover, not just the region, but again all the rows contained in the region, are updated 
with the result, which overwrites portions of the image which the user had not intended to operate on. 

7.5    Running the PIPT Plug-in 

Before running Photoshop, the PIPT plug-in must be installed, otherwise you will not find the submenu 
PIPT under the menu Filter of Photoshop. If the PIPT plug-in has already been installed, there is a 
submenu PIPT under the Filter menu in Photoshop. 

Before the PIPT plug-in is invoked from the menu Filter in Photoshop, LAM/MPI must be started. 
Otherwise the behavior is undefined. To start LAM, execute the following steps: 

1. The directory where LAM binaries are installed must be in your . cshrc path. 
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2. A text file listing machines to be used must be created. The "host" machine (i.e., the machine that 
the jobs will be run from) must be listed first in the file. For best performance, use machines on 
one subnet. 

3. LAM/MPI must be started on the target machines. From the command line, type: 

unix%  lamboot -v hostfile 

where hostfile is the filename of the file containing the hostnames of the machines to be used. 

4. After LAM has been started (lamboot spawns a daemon on all the machines in the hostfile), 
you can verify that they are working properly with the command: 

unix%  tping N -c3 

If LAM is operating correctly, you will see the results of a "ping" type of command that visits 
each machine in the LAM boot. 

After LAM is started, the PIPT plug-in can be selected from the submenu PIPT under the Filter 
menu in Photoshop. A dialog box will appear, then you can choose the PIPT routine to process the 
image. 

If you are finished using the PIPT plug-in, LAM may be shut down. This is accomplished with the 
wipe command and the same hostfile that was previously used with the lamboot command to start 
LAM: 

unix% wipe  -v hostfile 
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Chapter 8 

Summary and Conclusions 

There were a number of important results obtained over the course of this work. In this chapter, we sum- 
marize the concrete accomplishments of this effort, draw some conclusions, and suggest some directions 
for future work. 

8.1    Summary 

8.1.1    Advanced Data Handling 

Re-evaluating the PIPT code to take advantage of advanced data handling techniques such as keeping 
microprocessor pipelines full, reducing cache misses, and multithreading proved to be a wide-reaching 
task. The PIPT internal code was re-structured to take advantage of advanced data handling techniques 
and to force certain types of compiler optimizations, especially within loops over arrays of data. Nearly 
every image and feature processing routine was modified; all kernels were updated. 

The existing structure of the PIPT greatly facilitated the inclusion of various optimizations. Many of the 
image processing routines in PIPT make use of a small number of fundamental computational kernels. 
Concentrated optimization of these kernels provided increased performance throughout PIPT In addi- 
tion, the fundamental kernels typically operate with a helper processing function (e.g., iPAverage () 
uses the ProcessWindow () kernel in conjunction with a particular ComputePoint () helper func- 
tion). Additional optimizations, on a per-function basis, were obtained by optimizing these helper func- 
tions. Finally, the mechanisms for manipulating data between the kernels and the helper functions (e.g., 
data copying) were also optimized. 

Compiler and underlying hardware issues, as with any software package intended for multiple platforms, 
continued to cause portability problems. The PIPT was not portable to DEC OSF versions of Unix 
prior to version 4.0. However, through selective compilation, the PIPT remains portable to a variety of 
hardware and software platforms. 
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Further performance optimizations could likely be obtained in two ways: by moving to a more op- 
timizable programming paradigm and by making use of microprocessor-specific instructions (such as 
MMX or VIS). The mechanisms used by the PIPT to provide genericity in the PIPT implementation 
also tend to interfere with certain optimizations. For example, many of the kernels repeatedly call func- 
tions through pointers within an inner computational loop. This overhead could be removed by compile 
time polymorphism, such as that available in the C++ template system. Some of these issues related to 
generic programming and compile-time polymorphism are discussed in more detail below. 

8.1.2   Load Balancing 

The First-Finish, First-Serve (FFFS) algorithm proved to be an effective load balancing algorithm, par- 
ticularly in active heterogeneous workstation environments. The ability to adjust the FFFS parameters 
at run-time provides users with an additional tool to maximize performance in a variety of different en- 
vironments. But under some circumstances (particularly in active heterogeneous workstation environ- 
ments), FFFS can get stalled by slow or loaded processors. The Redundant FFFS (RFFFS) algorithm, 
based upon the original FFFS algorithm, solves this problem by allowing multiple processors to work 
on the same slice. 

Unfortunately, since currently the LAM implementation of MPI is not thread safe, allowing redundant 
processors to abort their current slice when the slice has already been returned by another process to the 
manager was not possible. Future implementations of LAM may include some degree of thread safety, 
which would allow this optimization to the RFFFS implementation. It should be noted that while other 
implementations of MPI are thread safe, these implementations are only provided by vendors for their 
specific architectures. LAM was chosen for this project because it works over clusters of heterogeneous 
workstations; it provides the maximum flexibility for execution environments. 

Further modifications to the load balancing schemes, to include sending non-uniformly sized slices 
and/or multiple slices to worker nodes, were investigated but not implemented because such enhancer 
ments require a different encapsulation model than is presently included in the PIPT. These enhance- 
ments would have been particularly useful for multiprocessor workers. 

Analysis of network patterns shows that faster networks (such as 100Mbps ethernet and 155Mbps ATM) 
significantly decrease overhead time, and therefore sped up the overall computation. 

8.1.3   Parallel HRVS 

Implementing a parallelized version of the HRVS system was a specific requirement of this effort. 
Incorporating HRVS into the PIPT framework illuminated a number of characteristics of the PIPT 
First, since HRVS is a computationally intensive algorithm, the speedups obtained with the parallelized 
version demonstrated the effectiveness of parallel computing and, to some degree, the flexibility and 
power of the PIPT toolkit. On the other hand, there were some aspects of the HRVS algorithm that did 
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not completely fit the PIPT image processing model. This is not a particular shortcoming of the PIPT 
framework. The PIPT was designed with image processing in mind, not video processing. Since the 
HRVS algorithm works with video data, it is no surprise that it was not completely straightforward to 
implement HRVS using PIPT. Future extensions to the PIPT should include mechanisms for handling 
video data in general, and for the HRVS in particular. 

8.1.4   Parallel Visualization 

Because of the low-level nature of visualization, it is not feasible to implement a portable parallel vi- 
sualization library from the bottom up. That is, at the lowest level, the library will, by necessity, have 
to work directly with the particular video hardware and microprocessor architecture on the execution 
target. Thus, the parallel visualization library will need to have at least two layers: the low-level vendor- 
and environment-specific layer, and the application interface layer (consistent across all platforms). 

In this effort, we designed and implemented the general interface layer for the parallel visualization 
library and provided a single instance of the low-level specific layer. In this case, the specific target was 
Sun SPARC Solaris machines. Fortunately, the low-level layer was itself a high-performance vendor- 
supplied visualization library, making it portable across most of the recent Sun Microsystems platforms. 

Porting to other platforms can be accomplished by implementing low-level layers for those particular 
platforms. Since most vendors have an interest in providing high-performance visualization, one can 
expect that most target environments will have at least some rudiments of vendor-tuned routines to hook 
into. 

8.1.5   Interface to Adobe Photoshop 

Having a visualization interface to the PIPT would seem to be an important and powerful extension to the 
library. Initially, interfacing to Adobe Photoshop seemed promising because Photoshop is a powerful 
and robust visualization environment and one that is extensible via its plug-in technology. There are 
several different levels at which one can plug-in to Photoshop. Unfortunately, the level at which it 
would make the most sense to plug in PIPT is only available through special licensing agreements with 
Adobe — and Adobe is no longer adding any new developers to this particular program. 

Thus we were left with having to plug in the PIPT to Photoshop as a filter. While this approach did 
work, filter plug-ins are loaded and unloaded each time they are invoked, so that the PIPT has to be 
completely initialized each time a PIPT operation is selected. This puts certain constraints on the run- 
time environment of the PIPT plug-in (not to mention the obvious lack of elegance in such an approach). 

A more fruitful approach for a visualization front-end for the PIPT may be to interface to a public 
domain visualization environment such as the GNU Image Manipulation Program (GIMP). Besides 
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having various types of plug-in technology, the GIMP is distributed as source code, so that, if necessary, 
modifications to the visualization program itself could be made to accommodate the PIPT interface. 

8.2   Conclusions 

There were several important contributions that resulted from this work and which in some sense tran- 
scend the particular tasks that were undertaken. First, the general approach that was taken to implemen- 
tation of the PIPT illustrates several important principles for the design and implementation of general 
purpose parallel libraries. In this regard, the PIPT design can serve as a "design pattern" for an extensi- 
ble parallel library. Second, the design pattern of the current implementation of the PIPT contains some 
notable attempts at programming image processing tasks in a generic fashion. 

Below, we discuss the design pattern evolved by PIPT as well as the issues involved in generic program- 
ming for image processing. 

8.2.1 A Design Pattern for Task Farm Parallelism 

The design pattern evolved by PIPT can be summarized as being a model for "task-farm" parallel com- 
putation. That is, computations are doled out to a number of worker processes. The computations are 
assigned in the form of a function to execute, along with input parameters to the function. The worker 
executes the specified function and sends back the result. 

The value added in this work is in the framework that allows this type of parallelization to be easily ac- 
complished for large classes of new functions. PIPT provides a simple registration-callback mechanism 
by which one can define new functions to the system. Once the function to be parallelized is specified to 
the parallel execution system, the underlying transport layer takes care of marshaling data to and from 
the worker processes and performing the actual parallel computations. The user is thus shielded from 
many of the typical concerns about parallel programming. A diagram of the PIPT architecture is shown 
in Figure 2.7. 

8.2.2 Generic Programming as an Approach for High Performance 

The computational kernel framework within PIPT is a reasonable design for genericity. That is, PIPT 
provides certain fundamental computational kernels that accomplish generic tasks, e.g., Process- 
Window () applies a specified window operation repeatedly across the input image. Different high- 
level image processing functionality is realized by calling ProcessWindow () with different window 
operations. 
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One drawback to this approach is that there is a certain overhead involved in invoking the window 
operation (specified by a function pointer) within the inner loop of ProcessWindow (). However, 
the use of function pointers is basically the only way to obtain this type of programming flexibility with 
the C language. 

In C++, however, there are a number of alternatives. One approach is to use inheritance, but that 
basically just hides the function pointer, the polymorphism is still accomplished at run-time. A more 
effective approach is to take advantage of compile-time polymorphism that is provided by the C++ 
template system, which allows the function to be Mined, thus removing the overhead. 

In this case, the prototype for ProcessWindow () might look like the following: 

template <class Image, class Region, class Operator> 
void 
ProcessWindow(const Image& Imagein, Image& ImageOut, 

Operator computePoint); 

The body of ProcessWindow () would be similar to that of the Standard Template Library (STL) [21] 
transform () algorithm and would consist of an iteration over the input image pixels to produce the 
output image pixels. The computePoint () argument could be a function pointer or (more generally) 
a function object. The use of iterators would further generalize this framework and would provide a 
ready mechanism for handling different image formats with no changes to the processing algorithms. 

8.3    Future Work 

Continuing research in image processing will entail a change in several of the internal PIPT models 
to afford optimizations that are not possible with the current implementation. These changes naturally 
fit within an object-oriented design, and would most easily be implemented by converting the PIPT to 
C++. C++ has significantly more expressive power, offers better data encapsulation than C, and allows 
for compile-time binding of image processing functions (vs. run-time binding with function pointers) 
through inlining and templates. Compile-time binding of functions will allow for much greater compiler 
optimization of image processing loops. The development of a generic framework for image processing 
is an exciting new avenue and should be more fully explored. 

Hyperspectral images may also be incorporated into the PIPT; the ability for optimized hyperimages 
with 100's or 1000's of data planes rather than single- or triple-planed images. 

Parallel input/output opportunities may be investigated with the recent implementation of the MPI-IO 
library from the Argonne National Laboratory. Thread safety issues may also continue to be explored; 
in particular cases, it is possible to utilize non-thread-safe libraries in a multi-threaded environment. 
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Finally, the possibility for asynchronous one-sided operations may be researched as implementations of 
the one-sided MPI functions become available. 
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Appendix A 

Test Results 

A.1    Test Plan Definition 

This document contains the specifications for the acceptance test plan for the Parallel Image Processing 
Toolkit, as well as for two related packages, the High-Resolution Video Stills (HRVS) library and the 
Parallel Visualization (PVIZ) library. 

Unless otherwise specified, the terms "the delivered software" should be understood to include the PIP T 
2.1 and the contributed HRVS and PVIZ libraries. 

The following particular aspects of the delivered software have been tested: 

Conformance of delivered source code: The source code must compile with no warnings and run with 
no memory leaks. 

Functionality: All PIPT 2.1, HRVS, and PVIZ image processing routines must function correctly, as 
specified by this test plan. 

Sequential and parallel performance: Sequential and parallel performance of the PIPT 2.1 should be 
improved in comparison to the PIPT 1.0.3. Parallel performance of HRVS and PVIZ should show 
reasonable scalability. 

Each of these aspects of the test plan are described in more detail below. 

A.2   Source Code Conformance 

There are two aspects to verifying the conformance of the delivered software. First, the software must 
compile on all specified architectures and operating systems with no compiler warning messages, with 
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any exceptions folly explained and justified.  Second, the code must execute with no memory leaks, 
again, with any exceptions fully explained and justified. 

A.2.1    Compilation Environments 

Software has been tested on the system configurations listed in Table A.l. A V" entry indicates that 
the PIPT ported successfully to that architecture, while a "<g>" entry indicates that the PIPT was not 
successfully ported to the specified architecture. 

Architecture Operating System Compiler Result 

Sun SPARC / UltraSPARC Solaris v2.4 gcc v2.7.2.3 V 
Solaris cc v4.2 y/ 

Solaris v2.5.1 gcc v2.7.2.3 V 
Solaris cc v4.2 V 

Solaris v2.6 gcc v2.7.2.3 V 
Solaris cc v4.2 V 

Dec Alpha / Alpha Server OSFv2.0 gcc v2.7.2.3 <s> 
OSF v3.2 gcc v2.7.2.3 ® 
OSF v4.0 OSF cc V5.2-036 v7 

Table A. 1: System configurations for software testing 

The software must compile on the above supported configurations with no compiler warning messages; 
any exceptions will be fully justified and explained. 

• The PIPT software failed to port to OSF v2.0 because the operating system does not support 
standard IEEE floating point arithmetic. Therefore, output from the test suite never agreed with 
output from other architectures. By our defintion, this constituted incorrect answers. There was 
no way to fix this problem within that release of the operating system. The PIPT has been declared 
incompatible with OSF v2.0. 

• The PIPT software failed the test suite on OSF v3.2 for the same reasons as listed above. There 
was no way to fix this problem within that release of the operating system. The PIPT has been 
declared incompatible with OSF v3.2. 

A.2.2   Memory Leaks 

The software must also run Solaris bcheck with no memory leaks reported. Since the Solaris bcheck 
program can only operate for non-distributed programs, the PIPT was only tested for memory leaks 
while running on one node only. Since the single node code is identical to the distributed, smgle node 
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conformance should be sufficient to guarantee the absence of memory leaks in the distributed memory 
case. 

Any exceptions (i.e., any leaks reported by bcheck) must be fully justified and explained. An example 
of such an exception would be a memory leak that occurs in a third-party library (such as the tiff 
image library). 

A.3   Functionality Testing 

To test functionality, we exercise each PIPT image processing function with a variety of parameters and 
verify that correct output is produced. These results were generated with the following test environment: 

• Sun UltraSPARC 140e workstations, 

• Solaris 2.5.1 operating system, 

• Workshop 4.2 C compiler, 

• lOObaseT Ethernet connectivity, and 

• LAM 6.1 version MPI. 

A.3.1    PIPT 2.1 

The IP Toolkit (IPT) was used to generate reference output for the enhance, feature, filter, and handling 
types of routines. One class of routines, random routines, cannot be tested against output from the IPT 
because the PIPT uses a different random number generator than the IPT (making exact comparison 
meaningless). Random routines were tested against the output of PIPT 1.0.3. 

A contrib/Test_suite subdirectory has been added to the PIPT code tree for the purposes of 
testing functionality. This test suite generated output using the PIPT 2.1, which was compared against 
the correct output previously generated (from the IPT). To check the full operability of the software, 
each test was repeated 10 times with two different input images (one color, one greyscale) to ensure 
persistence. The two test input images, cars. tif and eggs. tif, are shown as Figures A.l and A.2 
in Appendix A.5, respectively, cars . tif is an 896 x 636 black and white image; eggs. tif is a 
258 x 220 color image. Both input images were used as input for every tested routine. These cases are 
shown in Tables A.2 through A.9. 
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Routine Parameter Values # Nodes Result 

IPCenterMean whght = 5, wwdtb. = 5, fweight = 5 1 V 
5 y/ 

8 s/ 

IPContrastAdjust fAdjustParam = 0.5 1 V 
5 V 
8 y/ 

IPGammaAdjust dGamma = 3.0 1 V 
5 y/ 

8 V 
IPHistogramEqual none 1 y/ 

5 y/ 

8 V 
IPIntensityMap pixelmap1 1 V 

5 V 
8 V 

IPInvert none 1 V 
5 V 
8 y/ 

IPStretchRange none 1 V 
5 V 
8 y/ 

IPUnSharpMask none 1 V 
5 V 
8 y/ 

Table A.2: PIPT enhancement routines 

•pixelmap is a monotonically decreasing 256 element array; the first element's value is 255. 
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Routine Parameter Values # Nodes Result 
IPATrimmedCrMean win-height = 5, win_width = 5, alpha = 1.0 1 v/ 

5 V 
8 V 

IPATrimmedSqMean winJieight = 5, win_width = 5, alpha =1.0 1 V 
5 V 
8 V 

IPAverage wirLheight = 5, win_width = 5 1 V 
5 V 
8 V 

ffConvolution infeature = smallfeat2 1 V 
5 V 
8 V 

IPCrossMedian win_height = 5, win_width = 5 1 V 
5 V 
8 V 

IPGaussianSmooth stddev= 1.0 1 V 
5 V 
8 V 

IPSquareMedian win_height = 5, win_width = 5 1 V 
5 V 
8 V 

Table A.3: PIPT filter routines 

small. feat is generated by calling IPAboveThreshold on a 13 by 13 tiff cropped from the grayscale cars. tif. 
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Routine 
IPAboveThreshold 

IPBelowThreshold 

IPCannyEdge 

IPCoOccurCluster 

IPCoOccurContrast 

IPCoOccurCorrelation 

IPCoOccurEnergy 

IPCoOccurEntropy 

Parameter Values 
whght = 5, wwdth = 5, threshold = 150 

# Nodes Result 

whght = 5, wwdth = 5, threshold = 150 

aspect = 1.0, scale =1.0 

whght = 5, wwdth = 5, dist = 4, angle = 2 

whght = 5, wwdth = 5, dist = 2, angle = 2 

whght = 5, wwdth = 5, dist = 0, angle = 3 

whght = 5, wwdth = 5, dist = 0, angle = 3 

whght = 5, wwdth = 5, dist = 0, angle = 3 

IPCoQccurHomogeneity 

IPCoOccurlnverseMoment 

IPCoOccurMax 

whght = 5, wwdth = 5, dist = 0, angle = 3 

whght = 5, wwdth = 5, dist = 0, angle = 3 

whght = 5, wwdth = 5, dist = 0, angle = 3 

Table A.4: PIPT feature routines, part 1 

1 

8 

V 
V 

V 

V 

V 
V 
V 
V 

y/ 

v_ 
_£_ 
V 

_£_ 

_V_ 
_V_ 

_V_ 
_V_ 

HZ 
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Routine Parameter Values # Nodes Result 
IPFeatureConvolution infeature = smallfeat3 1 V 

5 V 
8 V 

IPFeatureSepConvolution fltrordr = 5, pkKernelParam.file4 1 V 
5 V 
8 V 

IPFreiEdge none 1 V 
5 V 
8 V 

IPKirschEdge none 1 V 
5 V 
8 V 

ffMarrffildrethEdge width = 0.5 1 V 
5 V 
8 V 

IPPrewittEdge none 1 V 
5 V 
8 V 

IPRobertsEdge none 1 V 
5 V 
8 V 

IPRobinsonEdge none 1 V 
.5 V 

8 V 
IPSobelEdge none 1 V 

5 V 
8 V 

Table A.5: PIPT feature routines, part 2 

3 A five element array = 0.0625,0.0625,0.125,0.25,0.5. 
4small. feat is generated by calling IPAboveThreshold on a 13 by 13 tiff cropped from the grayscale cars. tif. 
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Routine 
IPWindowMean 

IPWindowMoments 

IPWindowStdDev 

Parameter Values 
whght = 5, wwdth = 5 

whght = 5, wwdth = 5, nummoment = 3 

whght = 5, wwdth = 5 

# Nodes Result 

Table A.6: PIPT feature routines, part 3 

1 V 
V 

V 

V 
V 
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Routine Parameter Values # Nodes Result 
IP3GrayToColor greenTiff, blueTifr5 1 V 

5 V 
8 V 

IPAddConstant constant = 3 1 V 
5 V 
8 V 

EPAddlmage pimage26, iClip = 2 1 V 
5 V 
8 y/ 

IPCopylmage none 1 V 
5 V 
8 V 

EPCropImage tlrow = 0, tlcol = 0, height = 50, width = 50 1 y/ 

5 V 
8 V 

IPImageFlipHorizontal none 1 V 
5 V 
8 V 

IPImageFlip Vertical none 1 V 
5 V 
8 V 

IPImageRotate90 times = 1 1 V 
5 V 
8 V 

Table A.7: PIPT handling routines, part 1 

5Both inputs are the same as the source input image. 
6 Same as the input. 
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Routine Parameter Values # Nodes Result 

IPImageScale fscale = 2.305 1 V 
5 V 
8 v/ 

IPImageToColor ulRedPlane = 0, ulGreenPlane = 0, ulBluePlane = 0 

* 

1 V 
5 V 
8 V 

IPImageToGray ulPlane = 0 1 V 
5 V 
8 V 

EPImageToImage planemap.nums = (0,2, 1) 1 V 
5 V 
8 V 

IPMultConstant constant = 3 1 V 
5 V 
8 V 

IPMultlmage image27,iClip = 2 1 V 
5 V 
8 y/ 

IPSublmage image28, iClip = 2 1 V 
5 >/ 
8 V 

Table A.8: PIPT handling routines, part 2 

7 Same as the input. 
8 Same as the input. 

107 



Routine Parameter Values # Nodes Result 
IPAddBitError fpercent = .05, iseed = 1234 1 V 

5 V 
8 V 

IPAddGaussian fmean = 5, fstddev = 5, iseed = 1234 1 V 
5 V 
8 V 

EPAddlmpulsive fheight = 100, fpercent = .1, iseed = 1234 1 V 
5 V 
8 V 

IPAddUniform frange = 20, iseed = 1234 1 V 
5 V 
8 V 

IPImageHistogram none 1 V 
5 V 
8 V 

IPImageMax none 1 V 
5 V 
8 V 

IPImageMean none 1 V 
5 V 
8 V 

IPImageMin none 1 V 
5 V 
8 V 

IPImageMoments none 1 V 
5 V 
8 V 

IPImageStdDev ulnum_moments = 5 1 V 
5 >/ 
8 V 

Table A.9: PIPT random routines 
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A.3.2   Parallel HRVS 

A contrib/Test-sui te subdirectory was added to the PHRVS code tree, for the purposes of testing 
functionality. A test program generated output using PHRVS 1.0.1. The output expanded image was 
compared to the ideal original image and displayed the difference by both Mean Absolute Value (MAD) 
and Signal to Noise Ratio (SNR). Three frames of the Notre Dame Administration Building video 
sequence were used as the input; the middle frame was expanded using both HRVS and PHRVS library 
routines. Signal to noise ratio (SNR) figures (relative to the ideal original image) for the two output 
images was then computed. 

Since HRVS uses global minimizations, the output image of HRVS and PHRVS may not match exactly. 
However, the viewer usually cannot distinguish a SNR difference less than 0.1. Thus, if the SNR 
difference of two output images is less than 0.1, we say that these two images are similar enough, and 
that the result of PHRVS matches that of HRVS. 

A.3.3   Parallel Visualization 

The parallel visualization toolkit (PVIZ) is an interface between the PIPT and Sun's Xil foundation 
image processing library. A contrib/Test-Suite subdirectory was added to the PVIZ code tree 
to test the interface layer between the PIPT and the Xil library. The output of each PVIZ function was 
compared against the output of the corresponding Xil function to test for correctness. 

In addition, a demonstration subdirectory contrib/Demo was added to the PVIZ code tree to show 
the ability of the PVIZ toolkit to manipulate and display images on the screen. 

A.4   Performance Testing 

There are a number of aspects of the PIPT's performance that were tested. In particular: 

Performance Comparison of PIPT 2.1 and PIPT 1.0.3: These tests were performed to demonstrate 
the speedup of the PIPT 2.1 over the previous version of the PIPT due to improved data handling 
techniques. 

SMP Tests for PIPT 2.1: These tests demonstrated the performance gains obtained by PIPT operating 
in a shared memory environment. 

Scalability Tests for PIPT 2.1: These tests demonstrated the speedup obtained by PIPT operating in 
various parallel environments. 

Load Balancing Tests for PIPT 2.1: These tests demonstrated the robustness of the PIPT in non-dedicated 
parallel environments. 
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Routine Type Routines Parameter Values Result 
Enhance IPCenterMean none V 

IPUnsharpMask whght = 9, wwdth = 9, fweight = 9 V 
Feature IPCannyEdge aspect = 1.0, scale =1.1 V 

IPWindowMoments whght = 9, wwdth = 9, nummoment = 7 V 
Filter EPAverage win_height =11, win_width =11 V 

IPSquareMedian win-height = 9, win_width = 9 V 

Table A. 10: Subset of PIPT routines used for performance tests. 

Parallel HRVS and Parallel Visualization: These tests demonstrate the parallel performance of the 
Parallel HRVS and Parallel Visualization components. 

All timings were generated on the machines and networks noted in the Tables listed below; the Ultra- 
SPARC 140e and 170e machines were running Solaris 2.5.1, while the Ultra-Enterprise 3000 machine 
runs Solaris 2.6. The PIPT was compiled with Solaris Workshop 4.2 C compiler in all cases. The input 
image used was a 2910 x 3080 black and white, big. tif, shown as Figure A.3 in Appendix A.5. 

Time was measured as the elapsed wall clock time between start and stop invocations of a timing 
function. Speedup is defined as 

Basetime 
speedup = — :  

Newtime 
The specific definition of Basetime and Newtime is defined in each section below. 

We tested the PIPT for both sequential and parallel performance increases. The performance tests were 
made using subset of routines defined in Table A. 10. 

Note: Most of the tests below involve parallel computations on multiple processors. Unless otherwise 
indicated, the indicated number of parallel processors refers to the number of worker nodes. The man- 
ager process is on a processor independent of the workers and is not counted as a worker node. The 
tests in Section A.4.5 show the results obtained when the manager is run on the same node as one of the 
workers. 
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A.4.1    Performance Comparison of PIPT 2.1 and PIPT 1.0.3 

To compare the performance of PIPT 2.1 and PIPT 1.0.3, Basetime is generated with PIPT 1.0.3 and 
Newtime is generated with the PIPT version 2.1. The times are gathered for the system configurations 

shown in Tables A. 11 through A. 16. 

Configuration Device Basetime Newtime Speedup 

1 Sun UltraSPARC 140e N/A 10.145 1.622 6.255 

2 Sun UltraSPARC 140e lObT 8.791 1.631 5.390 

4 Sun UltraSPARC 140e lObT 4.595 1.633 2.814 

8 Sun UltraSPARC 140e lObT 2.298 1.800 1.277 

2 Sun UltraSPARC 140e lOObT 7.796 1.624 4.800 

4 Sun UltraSPARC 140e lOObT 4.043 1.625 2.488 

8 Sun UltraSPARC 140e lOObT 2.116 1.792 1.181 

Table A. 11: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPCenterMean, using 
parameter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime 
is the time obtained by PIPT 2.1. 

Configuration Device Basetime Newtime Speedup 

1 Sun UltraSPARC 140e N/A 104.789 34.649 3.024 

2 Sun UltraSPARC 140e lObT 82.411 27.699 2.975 

4 Sun UltraSPARC 140e lObT 46.976 19.304 2.433 

8 Sun UltraSPARC 140e lObT 32.079 11.695 2.743 

2 Sun UltraSPARC 140e lOObT 60.349 21.527 2.803 

4 Sun UltraSPARC 140e lOObT 34.218 12.244 2.795 

8 Sun UltraSPARC 140e lOObT 27.604 6.955 3.969 

Table A.12: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPUnsharpMask, using 
parameter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime 
is the time obtained by PIPT 2.1. 
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Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 18362.726 5479.237 3.351 
2 Sun UltraSPARC 140e lObT 11328.066 3464.327 3.269 
4 Sun UltraSPARC 140e lObT 6009.954 2289.812 2.625 
8 Sun UltraSPARC 140e lObT 3489.789 1616.345 2.159 
2 Sun UltraSPARC 140e lOObT 10517.114 3008.579 3.496 
4 Sun UltraSPARC 140e lOObT 5896.387 1971.967 2.990 
8 Sun UltraSPARC 140e lOObT 3182.812 1399.042 2.275 

Table A.13: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPCannyEdge, using 
parameter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime 
is the time obtained by PIPT 2.1. 

Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 14641.126 10477.192 1.397 
2 Sun UltraSPARC 140e lObT 11076.523 5910.164 1.874 
4 Sun UltraSPARC 140e lObT 7538.262 3185.516 2.366 
8 Sun UltraSPARC 140e lObT 4654.274 1802.212 2.583 
2 Sun UltraSPARC 140e lOObT 10385.549 5480.389 1.895 
4 Sun UltraSPARC 140e lOObT 6387.522 2964.529 2.155 
8 Sun UltraSPARC 140e lOObT 3546.472 1708.583 2.076 

Table A. 14: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPWindowMoments, 
using parameter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and 
Newtime is the time obtained by PIPT 2.1. 

Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 161.816 38.188 4.237 
2 Sun UltraSPARC 140e lObT 92.636 31.116 2.977 
4 Sun UltraSPARC 140e lObT 49.435 19.808 2.496 
8 Sun UltraSPARC 140e lObT 27.855 13.321 2.091 
2 Sun UltraSPARC 140e lOObT 81.814 23.441 3.490 
4 Sun UltraSPARC 140e lOObT 41.292 13.706 3.013 
8 Sun UltraSPARC 140e lOObT 21.315 8.182 2.605 

Table A.15: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPAverage, using param- 
eter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime is the 
time obtained by PIPT 2.1. 
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Configuration Device Basetime Newtime Speedup 
1 Sun UltraSPARC 140e N/A 538.702 413.755 1.302 
2 Sun UltraSPARC 140e lObT 281.999 248.995 1.133 
4 Sun UltraSPARC 140e lObT 143.933 125.304 1.149 
8 Sun UltraSPARC 140e lObT 74.753 64.892 1.152 
2 Sun UltraSPARC 140e lOObT 269.073 232.846 1.156 
4 Sun UltraSPARC 140e lOObT 135.216 118.080 1.145 
8 Sun UltraSPARC 140e lOObT 67.876 57.268 1.185 

Table A. 16: Test configuration for comparison of PIPT 2.1 with PIPT 1.0.3 for IPSquareMedian, using 
parameter values shown in Table A. 10. Here, Basetime is the time obtained by PIPT 1.0.3 and Newtime 
is the time obtained by PIPT 2.1. 
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A.4.2   Scalability and Load Balancing tests for PIPT 2.1 

In the following tests, Basetime refers to the sequential execution time of the PIPT 2.1 routine and 
Newtime refers to the parallel execution time. All tests were carried out on the indicated computational 
environments. The software was compiled with Solaris C 4.2; the 140e and 170e machines were running 
Solaris 2.5.1; the Ultra Enterprise 3000 (E3000) was running Solaris 2.6. 

Shared Memory Performance 

Tables A. 17 through A.22 show the PIPT performance tests for a strictly shared memory environment. 
In this case, all nodes are unloaded (except for the test program). 

Configuration # Threads Basetime Newtime Speedup 
1 Sun Ultra E3000 2 1.421 1.829 0.777 
1 Sun Ultra E3000 4 1.421 1.779 0.799 

Table A. 17: PIPT performance of IPCenterMean on an SMP with an insignificant load average. Here, 
Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP with 
the indicated number of threads. 

Configuration # Threads Basetime Newtime Speedup 
1 Sun Ultra E3000 2 27.586 15.773 1.749 
1 Sun Ultra E3000 4 27.586 8.099 3.406 

Table A. 18: PIPT performance of IPUnsharpMask on an SMP with an insignificant load average. Here, 
Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP with 
the indiciated number of threads. 

Configuration # Threads Basetime Newtime Speedup 
1 Sun Ultra E3000 2 4611.846 2553.691 1.806 
1 Sun Ultra E3000 4 4611.846 1245.326 3.703 

Table A. 19: PIPT performance of IPCannyEdge on an SMP with an insignificant load average. Here, 
Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP with 
the indicated number of threads. 
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Configuration # Threads Basetime Newtime Speedup 

1 Sun Ultra E3000 2 8341.226 4441.009 1.878 

1 Sun Ultra E3000 4 8341.226 2087.790 3.995 

Table A.20: PIPT performance of IPWindowMoments on an SMP with an insignificant load average. 
Here, Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP 
with the indicated number of threads. 

Configuration # Threads Basetime Newtime Speedup 

1 Sun Ultra E3000 2 29.225 16.447 1.777 

1 Sun Ultra E3000 4 29.225 8.374 3.490 

Table A.21: PIPT performance of IPAverage on an SMP with an insignificant load average. Here, 
Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP with 
the indiciated number of threads. 

Configuration # Threads Basetime Newtime Speedup 

1 Sun Ultra E3000 2 363.730 213.960 1.700 

1 Sun Ultra E3000 4 363.730 107.480 3.384 

Table A.22: PPT performance of IPSquareMedian on an SMP with an insignificant load average. Here, 
Basetime is the time obtained with a single thread and Newtime is the time obtained on the SMP with 
the indicated number of threads. 
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Strictly Distributed Memory Performance in Dedicated Homogeneous Environment 

Tables A.23 through A.28 show the PIPT parallel performance tests for a strictly distributed memory 
environment. In this case, all nodes are unloaded (except for the test program). 

Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 1.622 1.631 0.994 
4 Sun UltraSPARC 140e lObT 1.622 1.633 0.993 
8 Sun UltraSPARC 140e lObT 1.622 1.800 0.901 
2 Sun UltraSPARC 140e lOObT 1.622 1.624 0.999 
4 Sun UltraSPARC 140e lOObT 1.622 1.625 0.998 
8 Sun UltraSPARC 140e lOObT 1.622 1.792 0.905 

Table A.23: PIPT performance of IPCenterMean with all nodes having an insignificant load average. 
Here, Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the 
indicated cluster. 

Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 34.649 27.699 1.251 
4 Sun UltraSPARC 140e lObT 34.649 19.304 1.795 
8 Sun UltraSPARC 140e lObT 34.649 11.695 2.963 
2 Sun UltraSPARC 140e lOObT 34.649 21.527 1.610 
4 Sun UltraSPARC 140e lOObT 34.649 12.244 2.830 
8 Sun UltraSPARC 140e lOObT 34.649 6.955 4.982 

Table A.24: PIPT performance of IPUnsharpMask with all nodes having an insignificant load average. 
Here, Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the 
indicated cluster. 
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Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 5479.237 3464.327 1.582 

4 Sun UltraSPARC 140e lObT 5479.237 2289.812 2.393 

8 Sun UltraSPARC 140e lObT 5479.237 1616.345 3.390 

2 Sun UltraSPARC 140e lOObT 5479.237 3008.579 •     1.821 

4 Sun UltraSPARC 140e lOObT 5479.237 1971.967 2.779 

8 Sun UltraSPARC 140e lOObT 5479.237 1399.042 3.916 

Table A.25: PIPT performance of IPCannyEdge with all nodes having an insignificant load average. 
Here, Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the 
indicated cluster. 

Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 10477.192 5910.164 1.773 

4 Sun UltraSPARC 140e lObT 10477.192 3185.516 3.289 

8 Sun UltraSPARC 140e lObT 10477.192 1802.212 5.814 

2 Sun UltraSPARC 140e lOObT 10477.192 5480.389 1.912 

4 Sun UltraSPARC 140e lOObT 10477.192 2964.529 3.534 

8 Sun UltraSPARC 140e lOObT 10477.192 1708.583 6.132 

Table A.26: PEPT performance of IPWindowMoments with all nodes having an insignificant load aver- 
age. Here, Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained 
by the indicated cluster. 

Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 38.188 31.116 1.227 

4 Sun UltraSPARC 140e lObT 38.188 19.808 1.928 

8 Sun UltraSPARC 140e lObT 38.188 13.321 2.867 

2 Sun UltraSPARC 140e lOObT 38.188 23.441 1.629 

4 Sun UltraSPARC 140e lOObT 38.188 13.706 2.786 

8 Sun UltraSPARC 140e lOObT 38.188 8.182 4.667 

Table A.27: PIPT performance of IPAverage with all nodes having an insignificant load average. Here, 
Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the 
indicated cluster. 

117 



Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 413.755 248.995 1.662 
4 Sun UltraSPARC 140e lObT 413.755 125.304 3.302 
8 Sun UltraSPARC 140e lObT 413.755 64.892 6.376 
2 Sun UltraSPARC 140e lOObT 413.755 232.846 1.777 
4 Sun UltraSPARC 140e lOObT 413.755 118.080 3.504 
8 Sun UltraSPARC 140e lOObT 413.755 57.268 7.225 

Table A.28: PIPT performance of IPSquareMedian with all nodes having an insignificant load average. 
Here, Basetime is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the 
indicated cluster. 
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Strictly Distributed Memory Performance in Non-Dedicated Heterogeneous Environment 

Tables A.29 through A.34 show the PIPT parallel performance tests for a strictly distributed memory 
environment. In this case, besides the test program, the indicated number of nodes are loaded with jobs 
that increase the load average to be approximately 1.0 in the absence of the test program. 

Configuration #Busy Device None FFFS RFFFS 
2 Sun UltraSPARC 140e 1 lObT 1.629 1.628 1.630 
4 Sun UltraSPARC 140e 2 lObT 1.713 1.628 1.629 
8 Sun UltraSPARC 140e 4 lObT 1.809 1.626 1.632 
2 Sun UltraSPARC 140e 1 lOObT 1.626 1.629 1.624 
4 Sun UltraSPARC 140e 2 lOObT 1.634 1.626 1.626 
8 Sun UltraSPARC 140e 4 lOObT 1.642 1.627 1.629 
1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 1.625 1.626 1.627 
2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2(140e) lOObT 1.627 1.626 1.627 
4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4(140e) lOObT 1.626 1.625 1.627 

Table A.29: PIPT performance of IPCenterMean with some nodes having a significant load average (ap- 
proximately 1.0), using no load balancing {None), First-Finished, First-Served {FFFS), and Redundant 
First-Finished, First-Served {RFFFS). 

Configuration #Busy Device None FFFS RFFFS 
2 Sun UltraSPARC 140e 1 lObT 40.644 28.470 28.517 
4 Sun UltraSPARC 140e 2 lObT 24.057 17.865 17.991 
8 Sun UltraSPARC 140e 4 lObT 14.561 10.325 10.340 
2 Sun UltraSPARC 140e 1 lOObT 34.845 25.085 24.920 
4 Sun UltraSPARC 140e 2 lOObT 15.649 12.437 12.437 
8 Sun UltraSPARC 140e 4 lOObT 8.553 7.544 7.608 
1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 33.119 23.486 23.480 
2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2 (140e) lOObT 14.088 12.305 12.318 
4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4 (140e) lOObT 8.481 6.972 7.037 

Table A.30: PIPT performance of IPUnsharpMask with some nodes having a significant load average 
(approximately 1.0), using no load balancing {None), First-Finished, First-Served {FFFS), and Redun- 
dant First-Finished, First-Served {RFFFS). 
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Configuration #Busy Device None FFFS RFFFS 
2 Sun UltraSPARC 140e 1 lObT 5962.451 4851.562 4715.321 
4 Sun UltraSPARC 140e 2 lObT 3674.529 3058.965 3105.447 
8 Sun UltraSPARC 140e 4 lObT 2598.584 2186.254 2104.235 
2 Sun UltraSPARC 140e 1 lOObT 5265.683 4119.374 4198.276 
4 Sun UltraSPARC 140e 2 lOObT 3119.560 2528.598 2610.448 
8 Sun UltraSPARC 140e 4 lOObT 1935.123 1751.264 1780.788 
1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 5174.964 3791.767 3744.408 
2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2(140e) lOObT 2971.776 2340.215 2413.681 
4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4(140e) lOObT 1888.533 1641.583 1696.345 

Table A.31: PIPT performance of IPCannyEdge with some nodes having a significant load average (ap- 
proximately 1.0), using no load balancing (None), First-Finished, First-Served (FFFS), and Redundant 
First-Finished, First-Served (RFFFS). 

Configuration #Busy Device None FFFS RFFFS 
2 Sun UltraSPARC 140e 1 lObT 10012.239 6998.518 6845.258 
4 Sun UltraSPARC 140e 2 lObT 4987.830 3675.310 3712.534 
8 Sun UltraSPARC 140e 4 lObT 2615.547 2085.654 2098.563 
2 Sun UltraSPARC 140e 1 lOObT 8999.621 6819.180 6743.561 
4 Sun UltraSPARC 140e 2 lOObT 4522.571 3576.960 3586.012 
8 Sun UltraSPARC 140e 4 lOObT 2417.306 1940.014 2016.192 
1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 8907.163 6334.656 6185.544 
2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2(140e) lOObT 4482.413 3275.263 3186.548 
4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4(140e) lOObT 2408.607 1895.320 1906.728 

Table A.32: PIPT performance of IPWindowMoments with some nodes having a significant load av- 
erage (approximately 1.0), using no load balancing (None), First-Finished, First-Served (FFFS), and 
Redundant First-Finished, First-Served (RFFFS). 
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Configuration #Busy Device None FFFS RFFFS 

2 Sun UltraSPARC 140e 1 lObT 52.303 37.295 37.317 

4 Sun UltraSPARC 140e 2 lObT 31.858 24.240 24.300 

8 Sun UltraSPARC 140e 4 lObT 16.524 12.159 11.893 

2 Sun UltraSPARC 140e 1 lOObT 42.602 26.833 26.689 

4 Sun UltraSPARC 140e 2 lOObT 19.008 13.903 13.951 

8 Sun UltraSPARC 140e 4 lOObT 9.638 8.754 7.749 

1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 34.902 24.291 24.392 

2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2(140e) lOObT 18.762 12.776 12.654 

4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4(140e) lOObT 9.007 7.533 7.550 

Table A.33: PIPT performance of IPAverage with some nodes having a significant load average (ap- 
proximately 1.0), using no load balancing (None), First-Finished, First-Served (FFFS), and Redundant 
First-Finished, First-Served (RFFFS). 

Configuration #Busy Device None FFFS RFFFS 

2 Sun UltraSPARC 140e 1 lObT 457.627 304.362 303.569 

4 Sun UltraSPARC 140e 2 lObT 235.000 154.486 155.321 

8 Sun UltraSPARC 140e 4 lObT 125.413 88.974 88.249 

2 Sun UltraSPARC 140e 1 lOObT 411.434 299.269 295.466 

4 Sun UltraSPARC 140e 2 lOObT 198.898 148.119 148.355 

8 Sun UltraSPARC 140e 4 lOObT 101.164 74.884 74.830 

1 Sun UltraSPARC 140e, 1 UltraSPARC 170e 1 (140e) lOObT 402.022 274.567 267.158 

2 Sun UltraSPARC 140e, 2 UltraSPARC 170e 2 (140e) lOObT 191.615 132.620 133.526 

4 Sun UltraSPARC 140e, 4 UltraSPARC 170e 4(140e) lOObT 100.941 66.844 66.803 

Table A.34: PIPT performance of IPSquareMedian with some nodes having a significant load average 
(approximately 1.0), using no load balancing (None), First-Finished, First-Served (FFFS), and Redun- 
dant First-Finished, First-Served (RFFFS). 

121 



Mixed Shared and Distributed Memory Performance in Non-Dedicated Heterogeneous Environ- 
ment 

Tables A.35 through A.40 show the PIPT parallel performance tests for a strictly distributed memory 
environment. In this case, besides the test program the indicated nodes are loaded with jobs that increase 
the load average to be approximately 1.0 in the absence of the test program. 

Configuration #Busy Device None FFFS RFFFS 
1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1 (140e) lOObT 1.676 1.658 1.652 
1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2 (140e) lOObT 1.678 1.647 1.521 
1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4 (140e) lOObT 1.679 1.660 1.496 
1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1(170e) lOObT 1.629 1.628 1.628 
1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2(170e) lOObT 1.641 1.635 1.638 

Table A.35: PPT performance on IPCenterMean on workstation cluster with an SMP, with some nodes 
having a significant load average, using no load balancing (None), First-Finished, First-Served (FFFS), 
and Redundant First-Finished, First-Served (RFFFS). 

Configuration #Busy Device None FFFS RFFFS 
1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1(140e) lOObT 38.510 25.318 25.484 
1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2(140e) lOObT 20.737 14.480 13.890 
1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4(140e) lOObT 11.303 9.234 9.183 
1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1(170e) lOObT 35.571 24.812 24.706 
1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2(170e) lOObT 18.865 13.116 12.595 

Table A.36: PIPT performance of IPUnsharpMask on workstation cluster with an SMP, with some nodes 
having a significant load average, using no load balancing (None), First-Finished, First-Served (FFFS), 
and Redundant First-Finished, First-Served (RFFFS). 
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Configuration #Busy Device None FFFS RFFFS 

1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1 (140e) lOObT 4924.127 2707.897 2415.663 

1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2 (140e) lOObT 2731.889 2076.864 1834.934 

1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4 (140e) lOObT 1648.163 1364.681 1385.660 

1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1 (170e) lOObT 4466.876 2111.496 1906.118 

1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2 (170e) lOObT 2326.119 1614.779 1486.334 

Table A.37: PIPT performance of IPCannyEdge on workstation cluster with an SMP, with some nodes 
having a significant load average, using no load balancing (None), First-Finished, First-Served (FFFS), 
and Redundant First-Finished, First-Served (RFFFS). 

Configuration #Busy Device None FFFS RFFFS 

1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1 (140e) lOObT 8707.118 4086.896 3887.989 

1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2(140e) lOObT 4385.833 2899.406 2285.361 

1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4(140e) lOObT 2288.131 1485.716 1440.231 

1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1(170e) lOObT 7683.495 3606.434 3430.911 

1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2(170e) lOObT 3870.227 2558.547 2016.690 

Table A.38: PIPT performance of IPWindowMoments on workstation cluster with an SMP, with some 
nodes having a significant load average, using no load balancing (None), First-Finished, First-Served 
(FFFS), and Redundant First-Finished, First-Served (RFFFS). 

Configuration #Busy Device None FFFS RFFFS 

1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1 (140e) lOObT 41.734 26.086 25.819 

1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2 (140e) lOObT 21.938 15.471 15.610 

1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4(140e) lOObT 12.230 11.014 8.671 

1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1(170e) lOObT 38.802 25.128 24.997 

1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2(170e) lOObT 20.116 14.825 14.765 

Table A.39: PIPT performance of IPAverage on workstation cluster with an SMP, with some nodes 
having a significant load average, using no load balancing (None), First-Finished, First-Served (FFFS), 
and Redundant First-Finished, First-Served (RFFFS). 
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Configuration #Busy Device None FFFS RFFFS 
1 Sun Ultra E3000, 1 Sun UltraSPARC 140e 1 (140e) lOObT 399.518 197.213 150.848 
1 Sun Ultra E3000, 3 Sun UltraSPARC 140e 2(140e) lOObT 200.602 131.244 101.324 
1 Sun Ultra E3000, 7 Sun UltraSPARC 140e 4(140e) lOObT 103.753 67.649 65.595 
1 Sun Ultra E3000, 1 Sun UltraSPARC 170e 1(170e) lOObT 355.920 148.194 130.054 
1 Sun Ultra E3000, 3 Sun UltraSPARC 170e 2(170e) lOObT 179.664 87.115 75.219 

Table A.40: PIPT performance of IPSquareMedian on workstation cluster with an SMP, with some 
nodes having a significant load average, using no load balancing (None), First-Finished, First-Served 
(FFFS), and Redundant First-Finished, First-Served (RFFFS). 
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A.4.3   Parallel HRVS 

The performance testing program takes the Notre Dame Administration Building video sequence as 
input, and uses the PHRVS to generate the expanded output image. The "Dome" video sequence consists 
of three color (three-plane) 640 x 480 images, and is shown as Figure A.5 in Appendix A.5. The PHRVS 
is tested in two environments: 1, 2, 4, and 8 worker UltraSPARC 140E nodes, and 1, 2, and 4 worker 
threads on a single UltraSPARC Enterprise 3000 server. 

Table A.41 shows the results of these timings. Basetime is the serial time in each environment, while 
Newtime is the time for multiple nodes/threads. 

Configuration Device Basetime Newtime Speedup 

1 Sun UltraSPARC 140e lOObT 2280.800 2280.800 1.000 

2 Sun UltraSPARC 140e lOObT 2280.800 1160.300 1.966 

4 Sun UltraSPARC 140e lOObT 2280.800 662.100 3.445 

8 Sun UltraSPARC 140e lOObT 2280.800 356.100 6.405 

1 Sun Ultra E3000 1 thread 1963.700 1963.700 1.000 

1 Sun Ultra E3000 2 threads 1963.700 994.700 1.974 

1 Sun Ultra E3000 4 threads 1963.700 575.500 3.412 

Table A.41: PHRVS performance with all nodes having an insignificant load average 

Other testing is also performed to show the preformance gain by using VIS (Visual Instruction Set). 
Both the test images and configuration are the same as the previous test. 

Table A.42 shows the results of these timings.  Basetime is PHRVS run time without VIS, while 
Newtime is the PHRVS run time with VIS. 

Configuration Device Basetime Newtime Speedup 

1 Sun UltraSPARC 140e lOObT 6506.400 2280.800 2.853 

2 Sun UltraSPARC 140e lOObT 3309.900 1160.300 2.853 

4 Sun UltraSPARC 140e lOObT 1642.800 662.100 2.481 

8 Sun UltraSPARC 140e lOObT 754.600 356.100 2.119 

1 Sun Ultra E3000 1 thread 5845.000 1963.700 2.977 

1 Sun Ultra E3000 2 threads 2808.500 994.700 2.824 

1 Sun Ultra E3000 4 threads 1374.000 575.500 2.388 

Table A.42: PHRVS performance with all nodes having an insignificant load average 
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A.4.4   Parallel Visualization 

Performance testing was also done on the PVIZ toolkit to demonstrate speed up due to multi-threading 
on multiple processors. A test program and timing results for one and four processors was produced. 
Each of the PVIZ functions was timed to demonstrate the performance increase due to multi-threaded 
processing. 

Table A.43 shows the results of these timings. Basetime is the serial (i.e., a single thread) time, while 
Newtime is the time for four threads. The image processed was toys. tif, a color 512 x 512 image, 
and is shown as Figure A.4 in Appendix A.5. 

Function Basetime Newtime Speedup 
PVIZ.Convolvell 0.747 0.388 1.925 
PVTZ.ConvolvelD 0.683 0.272 2.511 
PVIZ.ConvolveDI 0.712 0.340 2.094 
PVIZ.ConvolveDD 0.646 0.241 2.680 
PVIZ _C opy Image 11 0.417 0.327 1.275 
PVI Z_CopyImage ID 0.466 0.252 1.849 
PVIZ.CopylmageDI 0.430 0.293 1.468 
PVIZ .Copy ImageDD 0.364 0.188 1.936 
PVIZ_EdgeDetectionII 1.138 0.403 2.824 
PVIZ_EdgeDetectionID 1.099 0.287 3.829 
PVIZJEdgeDetectionDI 1.145 0.380 3.013 
PVI Z_EdgeDetecti onDD 1.072 0.254 4.220 
PVIZ_RotateII 0.477 0.336 1.420 
PVIZ_RotateID 0.544 0.261 2.084 
PVIZ_RotateDI 0.425 0.307 1.384 
PVIZ_RotateDD 0.482 0.239 2.017 
PVIZ_ScaleII 0.479 0.325 1.478 
PVIZ_ScaleID 0.417 0.227 1.837 
PVIZ_ScaleDI 0.430 0.294 1.463 
PVIZ_ScaleDD 0.365 0.184 1.984 
PVIZJErodell 1.352 0.608 2.224 
PVIZ_ErodeID 1.295 0.504 2.569 
PVIZ_ErodeDI 1.300 0.569 2.285 
PVIZ_ErodeDD 1.248 0.469 2.661 

Table A.43: PVIZ performance on an unloaded Sun Ultra-Entrprise 3000 Server. Here, Basetime is the 
time obtained on a Sun Ultra 170E using XIL 1.2 and Newtime is the time obtained on a four processor 
Sun Ultra E3000 using XIL 1.3. 
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A.4.5   Combining Manager and Worker on a Single Node 

Tables A 44 through A.49 show the PIPT parallel performance tests for a strictly distributed memory 
environment. In this case, all nodes are unloaded (except for the test program) and the manager process 
is run on a node with one of the worker processes. 

Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 1.622 1.715 0.946 

4 Sun UltraSPARC 140e lObT 1.622 1.716 0.945 

8 Sun UltraSPARC 140e lObT 1.622 1.724 0.941 

2 Sun UltraSPARC 140e lOObT 1.622 1.621 1.001 

4 Sun UltraSPARC 140e lOObT 1.622 1.621 1.001 

8 Sun UltraSPARC 140e lOObT 1.622 1.629 0.996 

Table A.44: PIPT performance of IPCenterMean with all nodes having an insignificant load average, 
with the manager process running on the same node as one of the worker processes. Here, Basetime is 
the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the indicated cluster. 

Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 34.649 28.119 1.232 

4 Sun UltraSPARC 140e lObT 34.649 22.287 1.555 

8 Sun UltraSPARC 140e lObT 34.649 16.241 2.133 

2 Sun UltraSPARC 140e lOObT 34.649 22.481 1.541 

4 Sun UltraSPARC 140e lOObT 34.649 11.396 3.040 

8 Sun UltraSPARC 140e lOObT 34.649 7.089 4.888 

Table A.45: PIPT performance of IPUnsharpMask with all nodes having an insignificant load average, 
with the manager process running on the same node as one of the worker processes. Here, Basetime is 
the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the indicated cluster. 
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Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 5479.237 4631.612 1.183 
4 Sun UltraSPARC 140e lObT 5479.237 2675.502 2.048 
8 Sun UltraSPARC 140e lObT 5479.237 1797.584 4.282 
2 Sun UltraSPARC 140e lOObT 5479.237 3630.532 1.509 
4 Sun UltraSPARC 140e lOObT 5479.237 2173.525 2.521 
8 Sun UltraSPARC 140e lOObT 5479.237 1491.259 3.674 

Table A.46: PIPT performance of IPCannyEdge with all nodes having an insignificant load average, 
with the manager process running on the same node as one of the worker processes. Here, Basetime is 
the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the indicated cluster. 

Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 10477.192 7841.304 1.336 
4 Sun UltraSPARC 140e lObT 10477.192 5003.123 2.094 
8 Sun UltraSPARC 140e lObT 10477.192 2446.959 4.282 
2 Sun UltraSPARC 140e lOObT 10477.192 5617.601 1.865 
4 Sun UltraSPARC 140e lOObT 10477.192 2891.444 3.624 
8 Sun UltraSPARC 140e lOObT 10477.192 1587.261 6.601 

Table A.47: PIPT performance of IPWindowMoments with all nodes having an insignificant load aver- 
age, with the manager process running on the same node as one of the worker processes. Here, Basetime 
is the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the indicated cluster. 

Configuration Device Basetime Newtime Speedup 
2 Sun UltraSPARC 140e lObT 38.188 28.284 1.350 
4 Sun UltraSPARC 140e lObT 38.188 22.372 1.707 
8 Sun UltraSPARC 140e lObT 38.188 17.032 2.242 
2 Sun UltraSPARC 140e lOObT 38.188 25.318 1.508 
4 Sun UltraSPARC 140e lOObT 38.188 14.115 2.705 
8 Sun UltraSPARC 140e lOObT 38.188 7.104 5.376 

Table A.48: PIPT performance of IPAverage with all nodes having an insignificant load average, with 
the manager process running on the same node as one of the worker processes. Here, Basetime is the 
time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the indicated cluster. 
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Configuration Device Basetime Newtime Speedup 

2 Sun UltraSPARC 140e lObT 413.755 321.863 1.286 

4 Sun UltraSPARC 140e lObT 413.755 214.250 1.931 

8 Sun UltraSPARC 140e lObT 413.755 106.144 3.898 

2 Sun UltraSPARC 140e lOObT 413.755 233.846 1.769 

4 Sun UltraSPARC 140e lOObT 413.755 118.803 3.483 

8 Sun UltraSPARC 140e lOObT 413.755 58.784 7.039 

Table A 49- PIPT performance of IPSquareMedian with all nodes having an insignificant load average, 
with the manager process running on the same node as one of the worker processes. Here, Basetime is 
the time obtained on a single Sun Ultra 140E and Newtime is the time obtained by the mdicated cluster. 
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A.5   Test Suite Input Images 
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Figure A.l: cars. tif, single plane black and white 896 x 636 test image (shown half size) used for 
PIPT functionality testing 
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Figure A.2: eggs . tif, three plane color 258 x 220 test image (shown half size) used for PUT func- 
tionality testing 
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Figure A.3: big. ti f, one plane black and white 2910 x 3080 test image (shown one eighth of original 
size) used for PIPT performance testing 
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Figure A.4: cars. tif, three plane color 512 x 512 test image (shown half size) used for PVIZ 
functionality and performance testing 

Figure A.5: Dome sequence, three three-plane color 640 x 480 test images (each shown half size) used 
for PHRVS functionality and performance testing 
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